My-library.info
Все категории

Ричард Фейнман - 1. Современная наука о природе, законы механики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
1. Современная наука о природе, законы механики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
180
Читать онлайн
Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Ричард Фейнман - 1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

1. Современная наука о природе, законы механики читать онлайн бесплатно

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

То же явление наблюдается в простом домашнем опыте со стеклянной пластинкой и бокалом. Поставьте бокал на пластин­ку, накиньте на него петлю и тяните; он неплохо скользит и коэффициент трения чувствуется; конечно, этот коэффициент слегка нерегулярен, но все же это коэффициент. Увлажните теперь пластинку и ножку бокала и потяните; вы почувствуете, что они слиплись. Внимательно вглядевшись, можно обнаружить даже царапины. Дело в том, что вода может удалять жир и прочие вещества, засоряющие поверхность; остается чистый контакт стекло — стекло. Этот контакт настолько хорош, что разорвать его не так-то просто: нарушить его трудней, чем вы­рвать кусочки стекла, вот и возникают царапины.

§ 3. Молекулярные силы

А теперь перейдем к характеристике молекулярных сил. Это силы, действующие между атомами; ими в конечном счете и вызывается трение. Классической физике так и не удалось удовлетворительно объяснить молекулярные силы. Чтобы их полностью понять, понадобилась квантовая механика. Эмпири­чески, однако, силу, действующую между двумя атомами, можно изобразить примерно так, как на фиг. 12.2, где эта сила F представлена как функция расстояния r между атомами.

Фиг. 12.2. Сила, действующая между двумя атомами, как функ­ция расстояния между ними.

Бывают и другие случаи: в молекуле воды, например, отрица­тельные заряды размещены главным образом на атоме кисло­рода и центры положительных и отрицательных зарядов оказываются не в одной точке, поэтому соседние молекулы испы­тывают действие сравнительно больших сил. Называют эти силы диполь-дапольными. Но во многих системах заряды сба­лансированы куда лучше, в частности в газообразном кислороде они почти симметричны. В этом случае, хоть минус- и плюс-заряды рассеяны по молекуле, распределение их таково, что центры минус- и плюс-зарядов совпадают. Молекулы, центры которых не совпадают, называются полярными; произведение заряда на промежуток между центрами называется диполъным моментом. У неполярных молекул центры зарядов совпадают. Для них для всех оказывается, что, хотя суммарный общий за­ряд равен нулю, сила на больших расстояниях ощущается как притяжение и изменяется обратно пропорционально седьмой степени удаления, т. е. F=k/r7, где k — постоянная, завися­щая от типа молекул. Почему это так, вы узнаете тогда, когда выучите квантовую механику. У диполей силы притяжения еще заметнее. И наоборот, если атомы или молекулы тесно сбли­зить, они очень сильно отталкиваются; именно по этой причине мы не проваливаемся на нижний этаж!

Эти молекулярные силы можно увидеть почти непосредствен­но и в опыте со скольжением бокала по стеклу, и в опыте с дву­мя тщательно отшлифованными и пригнанными плоскими по­верхностями. Примером таких поверхностей могут служить плитки Иоганссона, которыми пользуются в машиностроении как стандартами для точных измерений длин. Если, прижав одну из плиток к другой, осторожно поднять верхнюю плитку, то нижняя тоже поднимется. Ее поднимут молекулярные силы, демонстрируя прямое притяжение атомов одной плитки к ато­мам другой.

И все же эти молекулярные силы притяжения не являются фундаментальными в том смысле, в каком фундаментально тяго­тение; они возникают в итоге неимоверно сложного взаимодей­ствия всех электронов и ядер одной молекулы со всеми элект­ронами и ядрами другой. Никакой простой формулы, которая бы учитывала все эти сложности, нельзя получить, так что это явление не фундаментальное.

Именно потому, что молекулярные силы притягивают на большом удалении и отталкивают на малом (см. фиг. 12.2), и существуют твердые тела; их атомы скреплены воедино вза­имным притяжением, но держатся все же на расстоянии друг от друга (если их сблизить, сразу включается отталкивание). На том расстоянии d, где кривая на фиг. 12.2 пересекает ось r, сила равна нулю, т. е. наступает равновесие; на этом расстоя­нии и располагается молекула от молекулы. Если молекулы сблизить теснее, чем на расстояние d, то возникает отталкива­ние, изображенное частью кривой выше оси r. Но даже для ничтожного сближения требуются огромные силы, потому что кривая круто идет вверх на расстояниях, меньших d. А стоит чуть развести молекулы, как начинается слабое притяжение, возрастающее по мере удаления. Если же их резко потянуть, то они навсегда отделятся и связь разорвется.

Когда молекулы лишь слегка сводят или слегка разводят от положения равновесия d, то маленький участок кривой близ этого положения можно считать за прямую линию. Поэтому часто обнаруживается, что при небольших сдвигах сила пропор­циональна смещению. Этот принцип известен как закон Гука, или закон упругости; он утверждает, что силы, стремящиеся после деформации тела вернуть его в начальное состояние, пропорцио­нальны этой деформация. Закон, конечно, соблюдается лишь тогда, когда деформации малы; когда они велики, тело либо разорвется, либо сломается, смотря по характеру деформаций. Величина силы, до которой закон Гука еще действует, зависит от материала; скажем, у теста или замазки она очень мала, у стали — относительно велика. Закон Гука легко можно про­демонстрировать на длинной стальной спиральной пружине, подвешенной вертикально. Грузик на нижнем конце пружины слегка раскручивает витки проволоки и тем самым немного оттягивает вниз каждый виток, приводя в общем на большом числе витков к заметному смещению. Если измерить общее удлинение пружины, скажем от гирьки весом 100 г, то окажет­ся, что каждые добавочные 100 г груза вызовут примерно такое же удлинение, что и первые 100 г. Это постоянство отношения силы к смещению нарушается, когда пружина перегружена; тогда закон Гука больше не выполняется.

§ 4. Фундаментальные силы. Поля

Мы хотим побеседовать теперь об оставшихся фундаменталь­ных силах. Называем мы их фундаментальными потому, что законы их действия фундаментально просты. Сперва рассмот­рим электрическую силу.

Тела несут в себе электрические заряды, которые состоят просто из электронов и протонов. Если два тела заряжены, меж ними действует электрическая сила; если величины зарядов рав­ны соответственно q1и q2, то сила изменяется обратно пропор­ционально квадрату расстояния между зарядами

F=(const) ·q1q2/r2.

Для разноименных зарядов этот закон похож на закон тяготения, но для одноименных сила становится отталкивающей и ее знак (направление) меняется. Сами заряды q1и q2могут быть и положительными и отрицательными; практически, пользуясь формулой, можно получить правильный знак силы, если поставить возле q их знаки. Сила направлена вдоль отрез­ка, соединяющего заряды. Коэффициент в формуле зависит, конечно, от выбора единиц силы, заряда и длины. Обычно заряд измеряют в кулонах, промежуток — в метрах, а силу — в ньютонах. Чтобы получить силу в ньютонах, константа (по историческим причинам ее пишут в виде 1/4pe0) должна при­нимать численное значение

1/4pe0= 8,99·109 ньютон·м2/кулон2, (а) т. е.

e0= 8,854·10-12 кулон2 /ньютон·м2. (б)

Итак, закон силы для покоящихся зарядов имеет вид

F=q1q2r/4pe0r3 (12 2)

В природе самый важный из всех зарядов — это заряд отдель­ного электрона, он равен 1,60·10-19 кулон. Кто работает не с большими зарядами, а с электрическими силами между фун­даментальными частицами, те предпочитают как-то выделить сочетание (qэл)2/4pe0, в котором qэл определяется как заряд элект­рона. Это сочетание часто встречается, и для упрощения рас­четов его обозначают e2; его численное значение в системе СИ оказывается равным (1,52·10-14)2. Удобство пользова­ния константой в этой форме заключается в том, что сила в ньютонах, действующая между двумя электронами, запишется просто как e2/r2 (r дано в метрах), без каких-либо коэффици­ентов. На самом деле электрические силы намного сложней, чем следует из этой формулы, потому что формула относится к покоящимся телам. Сейчас мы рассмотрим более общий случай.

Анализ фундаментальных сил (не сил трения, а электри­ческих сил или сил тяготения) связан с интересным и очень важным понятием.

Теория этих сил намного сложнее, чем об этом следует из закона обратных квадратов. Закон этот действует лишь тогда, когда взаимодействующие тела находятся в покое. Поэтому нужен усовершенствованный метод обращения с очень сложными силами — силами, которые возникают, когда тела начинают двигаться запутанным образом. Как оказалось, для анализа сил такого типа очень полезен подход, основанный на введении понятия «поля». Чтобы пояснить мысль на примере, скажем, электрической силы, положим, что в точке Р находится заряд q1, а в точке R—заряд q2. Сила, действующая между заря­дами, равна


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


1. Современная наука о природе, законы механики отзывы

Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.