3. Пусть Вселенная потрудится за вас.
Главное в WIMP — то, что их полным-полно129, пространство ими так и кишит.
*Видите? Так что не бойтесь поднять руку, пусть вас тоже сосчитают.
Как бы слабо они ни взаимодействовали, они все же вступают во взаимодействия. Что будет, если столкнуть WIMP и анти-WIMP? Как правило, ничего. Скорее всего они просто пройдут друг сквозь друга. А может быть, сделают то же самое, что делали все частицы и античастицы с начала времен,— уничтожат друг друга, и создадут гамма-излучение. Если направить телескопы в нужную сторону, мы, вероятно, увидим свет, возникший в результате этих столкновений.
Предположительно смотреть стоит именно в ту сторону, где больше массы. Беда в том, что при таком подходе массу следует искать именно в центре галактики, а там происходит много других событий — например, в центральную черную дыру падает вещество,— отчего тоже возникает высокоэнергичное гамма-излучение. Отличить сигнал от помех будет очень трудно, поэтому пока что достоверных наблюдений сделано не было.
В 2008 году НАСА в сотрудничестве с министерствами энергетики США, Франции, Германии, Италии, Японии и Швеции запустило на орбиту гамма-обсерваторию им. Ферми. Этот космический телескоп позволит нам исследовать центр галактики, а также звездные скопления, потенциальные черные дыры и другие излюбленные места обитания темной материи.
Хотите верьте, хотите нет, а у темной материи остается все меньше тайных убежищ.
II. Долго ли живут протоны?Мы, создатели «Руководства», считаем себя психологами-любителями130.
*И мамам своим мы звоним с завидной регулярностью, возможно, компульсивно, поэтому стараемся не слишком увлекаться психоанализом.
Мы предполагаем» что люди увлекаются физикой, потому что боятся катаклизмов, черных дыр и конца света либо надеются все о них узнать. Ведь и вы, проезжая мимо автомобильных аварий, всегда притормаживаете, чтобы посмотреть, правда?
Мы не станем подвергать ваши стимулы сомнению, поскольку они такие же, как у нас, и неважно, здоровые они или нет. Мы уже уделили много времени разговорам об исчезновении черных дыр, которое ждет нас в далеком будущем, и о так называемом втором законе термодинамики, согласно которому с течением времени Вселенная превратится в тепловатый бассейн, в котором не будет никакой речи ни о структуре, ни о жизни в том виде, в каком мы ее знаем. Мы даже упомянули о том факте, что Вселенная подвержена бесконечному экспоненциальному расширению, вызванному темной энергией. Оно будет продолжаться, пока каждая галактика не превратится в остров, полностью отрезанный от остальной Вселенной. Трудно представить себе более унылое будущее.
Но когда общаешься с физиком, всегда следует ожидать худшего. Что если мы вам скажем, что с течением времени сама материя будет медленно выкипать и испаряться?
Конец материиДа, мы знаем, что всерьез испортим вам настроение, поэтому первым делом поймите, что все это случится далеко не завтра. Когда речь идет о галактиках, черных дырах и испаряющейся материи, мы говорим даже не о миллионах и не о миллиардах лет. Мы говорим о периодах времени в триллионы миллиардов раз больше нынешнего возраста Вселенной. Учитывая, сколько гадостей произойдет за это время, гибель материи можно смело поместить в самый низ перечня ваших страхов.
Задаваясь вопросом о распаде материи, мы с практической точки зрения задаемся вопросом о распаде протонов. Мы уже говорили, что при всяком удобном случае нейтрон распадается на протон и кое-что еще, но только потому, что он тяжелее протона. Протон — самый легкий из барионов, поэтому мы ожидаем, что он сколько-то проживет.
Вопрос в том, сколько именно, и на это стандартная модель дает простой недвусмысленный ответ. Вечно. Протоны не распадаются, поскольку общее число барионов должно сохраняться. Поскольку протон — самый легкий барион, распадаться ему не на что.
Но если эта глава чему-то успела вас научить, так это тому, что стандартная модель отвечает отнюдь не на все вопросы. Если реакция идет в одном направлении, значит, должна иметь место и обратная реакция. Наверняка когда-то, еще во время Большого взрыва, было время, когда барионы создавались из ничего. С этой научной проблемой мы встретились в главе 7, когда обнаружили, что если бы барионы с антибарионами всегда создавались только парами, то и аннигилировать они должны тоже парами. Вы живое и ходячее доказательство того, что в какой-то момент все-таки имело место превосходство барионов над антибарионами! Вам повезло.
Вероятно, выработка лишних барионов имела место в конце периода инфляции, примерно через 10-32 секунды после Большого взрыва, а значит, она, вероятно, имела какое-то отношение к унификации электрослабого и сильного взаимодействий. Если закон сохранения количества барионов не действовал тогда, то и сейчас он в некоторой степени тоже не действует.
Представьте себе, что у вас есть собственная великая теория унификации (ВТУ). Первым делом мы бы спросили у вас, сколько, согласно вашей ВТУ, живет типичный протон. Согласно практически всем этим теориям до единой, протоны в конце концов распадаются на позитрон и еще одну частицу под названием пион. Главное различие между разными теориями — средняя продолжительность жизни протона. И это хорошо. Это значит, что если мы сумеем выяснить, сколько живут протоны, то у нас появится отменный критерий точности различных ВТУ — по крайней мере мы сможем тут же просеять эти теории сквозь частое сито.
Где же он, распад протонов?Некоторые из ранних моделей ВТУ предсказывали, что протон живет примерно 1031 лет. Это очень-очень долго. Гораздо больше возраста Вселенной, поэтому вы вправе предположить, что физики, которые выдвинули эти модели, просто взяли наугад протон-долгожитель и решили, что все равно никто не проживет настолько долго, чтобы опротестовать их нобелевский банковский счет.
К счастью, нам не нужно брать протончик, класть его на стол и ждать, когда он превратится во что-нибудь другое,— у нас есть методы и получше. В 1980-х годах ученые поняли, что для этого нужно построить гигантские подземные бассейны со сверхчистой водой131.
*Для наглядности: бассейн «Супер-Камиоканде» примерно в 10 раз больше по объему олимпийского плавательного бассейна — и все это находится в километре под землей. Это нужно, чтобы защитить бассейн от всех посторонних сигналов вроде космических лучей.
Главная цель таких экспериментов — посмотреть, распадется ли хоть один протон в бассейне, если оставить его в покое. Если да, то заряженные частицы, создавшиеся при распаде, промчатся по бассейну и испустят излучение, которое будет зафиксировано детекторами. Поскольку протонов много, разумно предположить, что, если наблюдать достаточно долго, хоть один да покинет сию юдоль скорби.
Что-то подобное мы видели в главе 3, когда говорили о космическом генераторе случайных чисел. Представьте себе, что протон и в самом деле живет 1031 лет. Это значит, что каждый год космический генератор случайных чисел бросает игральную кость, у которой 1031 граней, по одному разу на каждый протон в бассейне. Если у генератора выпадет единичка, соответствующий протон распадается. «Супер-Камиоканде» находится в шахте Моцуми неподалеку от японского города Хида, эксперименты подобного рода идут уже 25 лет, и еще ни разу не было засвидетельствовано ни одного распада132.
*Это означает, что мы катастрофически недооценили количество граней на нашей игральной кости. Теперь мы добавляем количество граней, пока не окажется, что разумно ожидать отрицательного результата. И не только отмели несколько ранних теорий, но и уяснили, что протон живет как минимум 1035 лет.
Это хорошие новости, поскольку отрицательный результат означает, что в обозримом будущем нам не придется спонтанно распадаться на высокоэнергичные частицы. С другой стороны, это плохие новости для некоторых ВТУ, поскольку теперь их можно легко опровергнуть. В наши дни остается все меньше и меньше моделей, соответствующих все - более и более долгой минимальной жизни протонов, но многие из них предполагают примерно 1036 лет.
Учитывая, насколько мы близки к точному определению этого периода, стоит ли удивляться, что мы уверены, будто определим его совсем скоро?
III. Какова масса нейтрино?Обсуждая кандидатов на роль темной материи, мы поговорили и о нейтрино и тут же отмели его. «Легковат»,— сказали мы. Если бы вы спросили нас, какова на самом деле масса нейтрино, мы бы начали ерзать и опускать глаза. Попросту говоря, мы не знаем, а долгое время вообще полагали, что нейтрино лишены массы. Оказывается, это не так, но первые признаки того, что нейтрино обладают массой, мы пронаблюдали практически случайно.