Фиг. 2.6. Излучение и поглощение фотона с частотой w.
Состояние с меньшей энергией мы назовем «основным», с большей — «возбужденным». Пусть Nосни Nвозб — средние числа атомов в основном и возбужденном состояниях; тогда для теплового равновесия при температуре Т из статистической механики следует
Каждый атом в основном состоянии может поглотить фотон и перейти в возбужденное состояние, и каждый атом в возбужденном состоянии может испустить фотон и перейти в основное состояние. При равновесии скорости этих двух процессов должны быть равны. Скорости пропорциональны вероятности событий и количеству имеющихся атомов. Пусть n — среднее число фотонов, находящихся в данном состоянии с частотой w. Тогда скорость поглощения из этого состояния есть Nocнn|а|2, а скорость испускания в это состояние есть Nвозб(n+1)|а|2, Приравнивая друг другу эти две скорости, мы получаем
Сопоставляя это с (2.30), имеем
Отсюда найдем
Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии
есть nhw, или
Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.
Фиг. 2.7. Уровни энергии гармонического осциллятора.
Обозначив энергию n-го уровня через nhw. мы получили, что средняя энергия такого осциллятора также давалась выражением (2.33). А сейчас это выражение было выведено для фотонов путем подсчета их числа и привело к тому же результату. Перед вами — одно из чудес квантовой механики. Если начать с рассмотрения таких состояний или таких условий для бозе-частиц, когда они друг с другом не взаимодействуют (мы ведь предположили, что фотоны не взаимодействуют друг с другом), а затем считать, что в эти состояния могут быть помещены нуль, или одна, или две и т. д. до n частиц, то оказывается, что эта система ведет себя во всех квантовомеханических отношениях в точности, как гармонический осциллятор. Таким осциллятором считается динамическая система наподобие грузика на пружинке или стоячей волны в резонансной полости. Вот почему можно представлять электромагнитное поле фотонными частицами. С одной точки зрения можно анализировать электромагнитное поле в ящике или полости в терминах множества гармонических осцилляторов, рассматривая каждый тип колебаний, согласно квантовой механике, как гармонический осциллятор. С другой, отличной точки зрения ту же физику можно анализировать в терминах тождественных бозе-частиц. И итоги обоих способов рассуждений всегда точно совпадают. Невозможно установить, следует ли на самом деле электромагнитное поле описывать в виде квантуемого гармонического осциллятора или же задавать количество фотонов в каждом состоянии. Оба взгляда на вещи оказываются математически тождественными. В будущем мы сможем с равным правом говорить либо о числе фотонов в некотором состоянии в ящике, либо о номере уровня энергии, связанного с некоторым типом колебаний электромагнитного поля. Это два способа говорить об одном и том же. То же относится и к фотонам в пустом пространстве. Они эквивалентны колебаниям полости, стенки которой отошли на бесконечность.
Мы подсчитали среднюю энергию произвольного частного типа колебаний в ящике при температуре T; чтобы получить закон излучения абсолютно черного тела, остается узнать только одно: сколько типов колебаний бывает при каждой энергии. (Мы предполагаем, что для каждого типа колебаний найдутся такие атомы в ящике — или в его стенках,— у которых есть Уровни энергии, способные приводить к излучению этого типа колебаний, так что каждый тип может прийти в тепловое равновесие.) Закон излучения абсолютно черного тела обычно формулируют, указывая, сколько энергии в единице объема уносится светом в малом интервале частот от со до w+Dw. Так что нам нужно знать, сколько типов колебаний с частотой в интервале Dw имеется в ящике. Хотя вопрос этот то и дело возникает в квантовой механике, это все же чисто классический вопрос, касающийся стоячих волн.
Ответ мы получим только для прямоугольного ящика. Для произвольного ящика выходит то же, только выкладки куда сложней. Нас еще будет интересовать ящик, размеры которого намного больше длины световых волн. В этом случае типов колебаний будет мириады и мириады; в каждом малом интервале частот Dw их окажется очень много, так что можно будет говорить об их «среднем числе» в каждом интервале Dw при частоте to. Начнем с того, что спросим себя, сколько типов колебаний бывает в одномерном случае — у волн в натянутой струне. Вы знаете, что каждый тип колебаний — это синусоида, кривая, обращающаяся на обоих концах в нуль; иначе говоря, на всей длине линии (фиг. 2.8) должно укладываться целое число полуволн.
Фиг. 2.8. Типы стоячих волн на отрезке.
Мы предпочитаем пользоваться волновым числом k=2p/l; обозначая волновое число j-го типа колебаний через kj, получаем
где j — целое. Промежуток dk между последовательными типами равен
Нам удобно выбрать столь большое kL, что в малом интервале Dk; оказывается множество типов колебаний.
Обозначив число типов колебаний в интервале Dk через, имеем
Физики-теоретики, занимающиеся квантовой механикой, обычно предпочитают говорить, что типов колебаний вдвое меньше; они пишут
И вот почему. Им обычно больше нравится мыслить на языке бегущих волн — идущих направо (с k положительными) и идущих налево (с k отрицательными). Но «тип колебаний», или «собственное колебание»,— это стоячая волна, т. е. сумма двух волн, бегущих каждая в своем направлении. Иными словами, они считают, что каждая стоячая волна включает два различных фотонных «состояния». Поэтому если предпочесть под подразумевать число фотонных состояний с данным k (где теперь уже k может быть и положительным, и отрицательным), то тогда окажется вдвое меньше. (Все интегралы теперь нужно будет брать от k=-Ґ до k =+Ґ, и общее число состояний вплоть до любого заданного абсолютного значения k получится таким, как надо.) Конечно, стоячие волны мы тогда не сможем хорошо описывать, но подсчет типов колебаний будет идти согласованно.
Теперь наши результаты мы обобщим на три измерения. Стоячая волна в прямоугольном ящике должна обладать целым числом полуволн вдоль каждой оси. Случай двух измерений дан на фиг. 2.9.
Фиг. 2.9. Типы стоячих волн в двух измерениях.
Каждое направление и частота волны описываются вектором волнового числа k. Его х-, у- и z-компоненты должны удовлетворять уравнениям типа (2.34). Стало быть, мы имеем
Число типов колебаний с kxв интервале Dkx, как и прежде, равно
то же и с Dky, и с Dkz. Если обозначить через (k) число таких типов колебаний, в которых векторное волновое число k обладает х-компонентой в интервале от kxдо kx+Dkx, у-компонентой в интервале от kyдо ky+Dky и z-компонентой в интервале от kzдо. kz +Dkz, то
Произведение Lx Ly Lz — это объем V ящика. Итак, мы пришли к важному результату, что для высоких частот (длин волн, меньших, чем габариты полости) число мод (типов колебаний) в полости пропорционально ее объему V и «объему в k-пространстве» DkхDkyDkz. Этот результат то и дело появляется то в одной, то в другой задаче, и его стоит запомнить: