реакцию на первую цифру, а потом — на вторую и подумайте, как бы вы в тех и других обстоятельствах оценивали свои перспективы. Вот почему любому человеку не помешает как следует разобраться в теореме Байеса.
Чтобы принять сопряженное с риском решение, необходимо оценить шансы («Есть ли у меня рак?») и взвесить последствия каждого из вариантов («Если у меня рак, а я не буду лечиться, я умру; если же у меня нет рака, а я соглашусь на хирургическое вмешательство, мне придется испытать боль и подвергнуться ненужной уродующей операции»). В главах 6 и 7 мы порассуждаем о том, как надо принимать решения с учетом их последствий, если нам известны вероятности; но в любом случае начинать нужно с вычисления самих вероятностей: какова вероятность, что некое обстоятельство истинно в свете имеющихся доказательств?
Как бы ни пугало вас слово «теорема», правило Байеса не очень сложно, и, как мы убедимся в конце главы, его вполне можно прочувствовать интуитивно. Величайшая догадка его преподобия Томаса Байеса (1701–1761) состоит в следующем: уровень доверия гипотезе можно количественно выразить в виде вероятности. (Это субъективистское понимание слова «вероятность», с которым мы познакомились в предыдущей главе.) Пусть Р(гипотеза) — это вероятность гипотезы, другими словами, степень нашей уверенности в ее истинности. (Если говорить о медицинском диагнозе, гипотеза — это утверждение, что пациент болен.) Очевидно, что доверие любой идее должно основываться на доказательствах. Языком теории вероятности можно сказать, что доверие должно обусловливаться доказательством. Следовательно, нас интересует вероятность гипотезы при условии наличия имеющихся данных, то есть Р(гипотеза|данные). Эту вероятность еще называют апостериорной, или уверенностью в гипотезе после изучения доказательств.
Усвоив этот теоретический момент, вы разберетесь и с правилом Байеса, поскольку это всего лишь формула вычисления условной вероятности, знакомая нам из предыдущей главы, примененная к уверенности и доказательству. Мы помним, что вероятность А при условии В равна вероятности (А и В), деленной на вероятность В. Следовательно, вероятность гипотезы с учетом имеющихся данных (которая нам и нужна) — это вероятность конъюнкции гипотезы и данных (скажем, пациентка больна и анализ у нее положительный), деленная на вероятность данных (общую долю пациентов с положительным тестом, больных и здоровых). Запишем это в виде равенства: Р(гипотеза|данные) = Р(гипотеза И данные)/Р(данные). Еще одно напоминание из главы 4: вероятность (А и В) равна вероятности А, умноженной на вероятность В, при условии А. Подставив все это в равенство, получаем правило Байеса:
Что это значит? Вспомним, что Р(гипотеза|данные), левая часть равенства, — это апостериорная вероятность — степень доверия гипотезе, уточненная после изучения доказательств. Например, уверенность в диагнозе после того, как стал известен результат анализа.
Р(гипотеза) в правой части равенства — это априорная вероятность, то самое «априори», степень доверия гипотезе до изучения данных. Насколько гипотеза убедительна или общепринята? Что нам пришлось бы предположить, не будь у нас тех новых данных, что теперь имеются? Если говорить о болезни, это была бы ее распространенность в популяции, то есть базовая оценка.
Р(данные|гипотеза) — это правдоподобие. «Правдоподобие» в байесовском смысле — не синоним вероятности; это оценка возможности появления данных, если гипотеза верна [218]. Если некто болен, насколько правдоподобно, что у него проявится некий симптом или анализ окажется положительным?
И наконец, Р(данные) — это полная вероятность появления данных во всех случаях, независимо от того, верна гипотеза или неверна. Ее иногда называют маргинальной вероятностью — не потому, что она незначительна, но потому, что суммарный итог по каждой строке (или столбцу) принято было записывать на полях (от margin, «поле страницы»), то есть это суммарная вероятность получения данных при условии, что гипотеза верна, и при условии, что она неверна. Легче запомнить другой термин — «распространенность данных». В случае медицинского диагноза это доля всех пациентов (как больных, так и здоровых) с определенным симптомом или с положительным результатом анализа.
Заменив алгебраическое равенство удобной для запоминания схемой, получаем:
В переводе с языка математики это звучит следующим образом: «Степень доверия гипотезе после изучения данных должна быть равна априорной уверенности в гипотезе, умноженной на правдоподобие появления данных при условии, что гипотеза верна, и деленной на суммарную распространенность данных при всех условиях».
В обычной жизни это работает так. Вам стал известен новый факт; как должна измениться ваша уверенность в гипотезе? Во-первых, доверяйте ей сильнее, если с самого начала она была неплохо обоснована, внушала доверие или походила на правду, то есть если высока ее априорная вероятность (первый множитель в числителе). Как неустанно твердят студентам-медикам преподаватели, если за окном раздается стук копыт, это, скорее всего, лошадь, а не зебра. Если пациент жалуется на боли в мышцах, скорее всего, у него грипп, а не болезнь куру (редкое заболевание, распространенное среди представителей племени форе в Новой Гвинее), даже если симптомы согласуются как с тем, так и с другим заболеванием.
Во-вторых, доверяйте гипотезе больше, если подобные данные встречаются особенно часто, когда она верна, то есть если высоко правдоподобие данных (второй множитель в числителе). Если к вам обращается пациент с кожей голубого оттенка, разумно будет предположить у него метгемоглобинемию, известную как болезнь голубой кожи; пятнистую лихорадку Скалистых гор разумно заподозрить у пациента из района Скалистых гор, который является на прием с сыпью и повышенной температурой.
В-третьих, понижайте уровень доверия гипотезе, если подобные данные в принципе встречаются часто — если высока распространенность данных (знаменатель дроби). Нас забавляет ипохондрик Ирвин, убежденный в диагнозе, который он сам себе поставил, основываясь на характерном для болезни печени отсутствии болевых ощущений. Да, правдоподобие отсутствия симптомов при условии, что он болен, велико (что немного увеличивает числитель), но ведь и распространенность данных огромна (большинство людей большую часть времени не ощущают дискомфорта в области печени), а значит, знаменатель взлетает до небес, минимизируя апостериорную вероятность, то есть степень доверия диагнозу, который поставил себе Ирвин.
Давайте посмотрим, как это работает с цифрами. Вернемся к примеру с онкологическим диагнозом. Частота, с которой заболевание встречается в популяции, 1 %, это наша априорная вероятность: Р(гипотеза) = 0,01. Чувствительность теста — это правдоподобие положительного результата анализа при условии, что пациент болен: Р(данные|гипотеза) = 0,9. Общая распространенность положительного результата анализа равна сумме вероятностей верного попадания для тех, кто действительно болен (90 % от 1 %, или 0,009), и ложной тревоги для тех, кто на самом деле здоров (9 % от 99 %, или 0,0891), что дает нам число 0,0981, которое мы округлим до 0,1. Подставив значения переменных в