My-library.info
Все категории

Сергей Попов - Суперобъекты. Звезды размером с город

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Сергей Попов - Суперобъекты. Звезды размером с город. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Суперобъекты. Звезды размером с город
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
181
Текст:
Ознакомительная версия
Читать онлайн
Сергей Попов - Суперобъекты. Звезды размером с город

Сергей Попов - Суперобъекты. Звезды размером с город краткое содержание

Сергей Попов - Суперобъекты. Звезды размером с город - описание и краткое содержание, автор Сергей Попов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга посвящена нейтронным звездам – единственным астрономическим объектам, исследования которых отмечены уже двумя Нобелевскими премиями по физике, и еще две – на подходе. Это говорит о том, что именно они среди всего многообразия небесных тел представляют наибольший интерес для современной физики. Вы узнаете о том, как астрономы наблюдают нейтронные звезды, и какими удивительными объектами они могут быть, а кроме того, у вас будет возможность познакомится с необычными физическими явлениями, связанными с этими суперобъектами.

Суперобъекты. Звезды размером с город читать онлайн бесплатно

Суперобъекты. Звезды размером с город - читать книгу онлайн бесплатно, автор Сергей Попов
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Изображение системы 2M1207, состоящей из экзопланеты (ее обозначают 2M1207b, она слева внизу) и бурого карлика. Это первый в истории прямой снимок объекта планетной массы (несколько масс Юпитера) вне Солнечной системы. Данная экзопланета видна благодаря собственному излучению. За счет продолжающегося гравитационного сжатия недра объекта разогреваются, и мы видим его инфракрасное излучение. То же верно и для некоторых других достаточно молодых планет. Поскольку соседом 2M1207b является бурый карлик – т. е. «недозвезда», в которой не начались реакции превращения водорода в гелий, то иногда ее классифицируют не как экзопланету, а как «объект планетной массы, вращающейся вокруг бурого карлика». Наблюдения проводились на телескопах VLT Европейской южной обсерватории (ESO).


Звезды в виде ярких неподвижных огоньков в небе были известны людям всегда, но, что это такое, по-настоящему поняли только в XIX веке, когда сумели надежно и достоверно измерить расстояния до звезд. Конечно, и раньше многие предполагали, что звезды – это далекие солнца, но тогда это были всего лишь догадки. Известно, например, что Тихо Браге был противником этой идеи, как раз потому, что он не смог измерить параллактическое смещение звезд и тем самым определить расстояния до них, а смириться с тем, что это настолько далекие солнцеподобные объекты, ему не позволяли его философские убеждения.

В 30-е годы XIX века сразу три астронома в разных странах (и даже полушариях) смогли измерить расстояния до звезд. Томас Хендерсон проводил свои наблюдения в Южной Африке (а обрабатывал уже в Британии). Он правильно выбрал звезду – Альфа Центавра. Это действительно ближайшая звезда на нашем небе. И Хендерсон верно измерил расстояние – получилось около одного парсека (т. е. три световых года с четвертью). Хотя наблюдения проводились в 1832–1833 годах, результаты были опубликованы только в 1839-м, поэтому пальму первенства он упустил. К чему, видимо, отнесся со свойственным английским джентльменам спокойствием.

Формально гонку выиграл Фридрих Бессель. Он выбрал слабую звезду 61 Лебедя, положившись на ее большое собственное движение на небе. И не прогадал. В 1838 году он опубликовал точные надежные измерения: расстояние порядка 10 световых лет (три парсека с лишним).

Другой Фридрих (которого мы знаем как Василия) – Струве – выбрал одну из двух самых ярких звезд северного неба – Вегу. И в серии работ (первая раньше работы Бесселя, вторая – позже) показал, что расстояние до Веги составляет 4–8 парсек (сейчас мы знаем, что оно составляет чуть менее 8 парсек).

Но знать расстояния – это еще не все.

Рождение и смерть звезд

Звезды рождаются и умирают, в том числе и прямо сейчас. Этот неоспоримый факт веками не был общепринятым и очевидным. Звезды воспринимались людьми как нечто практически вечное. Считалось, что эти далекие объекты, пусть и похожие на Солнце, светят всегда или почти всегда и в наше время уже не формируются и еще не прекращают свое существование. Это казалось логичным, само собой разумеющимся (возможно, Иммануил Кант был одним из первых, кто в Новое время серьезно заговорил о том, что звезды рождаются и умирают, и представил модель для формирования звезд и планетных систем, обычно же обсуждение ограничивалось Солнечной системой, хотя стоит отметить и Эммануила Сведенборга, рассуждавшего, правда, в рамках декартовской модели, где гравитация не играет определяющую роль). Но теперь мы понимаем, что звезды, конечно же, образуются, изменяются на протяжении своей жизни, и затем их жизненный цикл заканчивается – они во что-то превращаются. И это второй важный факт: звезды рождаются, живут и умирают. И это происходит на наших глазах.

Жизнь звезды – это в основном смена источников горения, смена источников энергии. Энергия вырабатывается в результате термоядерных реакций. Все эти термоядерные реакции начинаются с того, что водород превращается в гелий. Сейчас именно этот процесс происходит в Солнце и, вообще говоря, в большинстве звезд. Это самая длинная стадия звездной эволюции, она занимает примерно 90 % жизни звезды, некоторые из самых первых звезд нашей Галактики еще находятся на ней. Поэтому если мы наугад выберем какую-то звезду на небе, то с вероятностью более 90 % окажется, что в ее недрах водород пережигается в гелий. Затем водород заканчивается, звезда претерпевает первое изменение – она раздувается, превращается в красного гиганта. На диаграмме Герцшпрунга – Рэссела этот процесс соответствует движению вправо и вверх, в область низкой температуры поверхности, но большой полной светимости. Дальше все зависит от самого главного параметра звезды – от ее массы. Если масса достаточно большая, то ядро подожмется, станет еще более плотным и горячим, и пойдут следующие реакции: гелий начнет превращаться в углерод, углерод – в кислород, и так цепочка может идти до железа[2]. Лишь до железа и родственных элементов (никеля, кобальта), а не дальше вдоль таблицы Менделеева, потому что только это энергетически выгодно, так как при таких термоядерных реакциях энергия выделяется. Чтобы процесс шел дальше, необходимы затраты энергии, что невозможно на данном этапе жизни звезды: природа так не действует в стабильном режиме. Нужно чтобы происходило что-то не стационарное, чтобы что-то взрывалось. Что взрывается в звезде? Давайте поговорим об этом.


Диаграмма Герцшпрунга – Рэссела. Горизонтальная ось, на которой указаны спектральные классы, соответствует температуре звезд (горячие – слева, холодные – справа). Вертикальная – светимости (яркие вверху, слабые – внизу), она выражена в единицах светимости Солнца. Хорошо видны основные последовательности. Они соответствуют различным стадиям эволюции звезд. Важно, что эти последовательности не являются эволюционными треками. Выделяется так называемая главная последовательность, на которой звезда проводит бóльшую часть своей жизни, превращая водород в гелий.


Легкие звезды живут очень долго и очень медленно пережигают водород в гелий. Поскольку Вселенной всего лишь 13 миллиардов лет с хвостиком, то даже самые первые из легких звезд (с массой раза в два меньше солнечной и более легкие) должны доживать до наших дней. И их можно увидеть. Это очень важная задача – искать первичные звезды, образовавшиеся на самой-самой заре жизни Вселенной – спустя всего лишь несколько десятков миллионов лет после Большого взрыва.

Массивные звезды живут меньше просто потому, что они светят ярче и быстрее пережигают свой запас водорода, хотя его и больше, но светимость очень резко растет с ростом массы из-за роста температуры и плотности в центре. Если звезда имеет массу порядка солнечной, то она живет где-то 10–12 миллиардов лет. Солнце находится в середине жизненного пути, и в конце такой объект не взрывается – наша звезда просто не может взорваться, нет никаких физических причин для этого. Солнце превратится в красного гиганта, внешняя оболочка будет сброшена и останется постепенно остывающее ядро без источников энергии – белый карлик.

Белый карлик – это конечная стадия эволюции не слишком массивных звезд. Если же звезда раз в десять тяжелее Солнца, то она превратится не в белого карлика. В конце ее жизни ядро потеряет устойчивость. Оно уже будет состоять в основном из железа и начнет схлопываться, но этот коллапс может остановиться. И тогда произойдет очень мощное выделение энергии. Звезда как бы упадет сама на себя, но не превратится сразу в черную дыру, а произойдет взрыв сверхновой. Это очень важное событие. Оно не только имеет огромное значение в жизни отдельной звезды, отмечая ее яркий финал, но и позволяет образовывать тяжелые элементы.

В природе некоторые элементы тяжелее железа могут образовываться в заметном количестве практически только при взрывах сверхновых (также массивные ядра элементов могут возникать при слияниях нейтронных звезд и при быстром истечении оболочек красных сверхгигантов). А сверхновые – это в основном результат коллапса ядер массивных звезд (есть еще взрывы сверхкритических белых карликов в двойных системах, но их оставим на потом). Если мы говорим о звезде с массой в 10, 20, может быть, в 30 раз больше солнечной, то после взрыва сверхновой останется нейтронная звезда – крайне интересный объект, очень компактный. Средняя плотность у нейтронной звезды чуть выше, чем у атомного ядра[3], а в центре, разумеется, еще больше. Неудивительно, что такой объект имеет очень интересные физические свойства. Если же звезда вначале была еще более массивной, то, скорее всего, она превращается в черную дыру. То есть все-таки коллапс не останавливается – все схлопывается, гравитация побеждает все остальные силы, и образуется черная дыра. Иногда это может произойти со взрывом, а иногда – нет. Таким образом, у разных звезд разные судьбы.

Ознакомительная версия.


Сергей Попов читать все книги автора по порядку

Сергей Попов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Суперобъекты. Звезды размером с город отзывы

Отзывы читателей о книге Суперобъекты. Звезды размером с город, автор: Сергей Попов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.