My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
211
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Рассмотрим теперь ситуацию, когда А торгует отдельно от Б. В этом случае мы де­лаем 1 ставку на каждые 4 единицы на комбинированном счете для системы А (так как это оптимальное f для одной игры). В игре с одновременными ставками мы все равно ставим 1 единицу на каждые 4,347826087 единицы на балансе счета как для А, так и для Б. Отметьте, что независимо от того, отдельная это ставка или од­новременная ставка по А и Б, мы применяем то оптимальное f, которое увеличи­вает доход при бесконечном повторении ставок.

А Б Комбинированный счет 1 000,00 -1 - 250,00 750,00 2 345,20 -1 -172,50 922,50 -1 -212,17 2 424,35 1 134,67 2 567,34 1 702,01 -1 -391,46 -1 -391,46 919,09 2 422,78 2 422,78 1 764,65

Как видите, с помощью этого метода мы получаем небольшой выигрыш, и чем больше сделок проходит, тем больше этот выигрыш. Тот же принцип применяется к торговле портфелем, где не все компоненты портфеля находятся на рынке в определенный момент времени. Вам следует торговать на оптималь­ных уровнях для комбинации компонентов (или одного компонента), чтобы получить в итоге оптимальный рост, как будто этой комбинацией компонентов (или одним компонентом) придется торговать бесконечное количество раз в будущем.

Потеря эффективности при одновременных ставках или торговле портфелем

Давайте вернемся к нашей игре с броском монеты 2:1. Допустим, мы собираемся одновременно сыграть в две игры: А и Б, — и существует нулевая корреляция между результатами этих двух игр. Оптимальные f для такого случая соответству­ют ставке в 1 единицу на каждые 4,347826 единицы на балансе счета, когда игры проводятся одновременно. Отметьте, что при начальном счете в 100 единиц мы заканчиваем с результатом в 156,86 единицы:


Таблица V Система А Сделка P&L Система Б Сделка P&L Счет Оптимальное f соответствует 1 единице на каждые 4,347826 единицы на счете: 100,00 -1 -23,00 -1 -23,00 54,00 2 24,84 -1 -12,42 66,42 -1 -15,28 2 30,55 81,70 2 37,58 2 37,58 156,86

Теперь давайте рассмотрим систему В. Она будет такой же, как система А и Б, только мы будем играть в эту игру без одновременного ведения другой игры. Мы сыграем 8 раз, но не 2 игры по 4 раза, как в прошлом примере. Теперь наше оптимальное f - это ставка 1 единицы на каждые 4 единицы на балансе счета. Мы, как и прежде, имеем те же 8 сделок, но лучший конечный резуль­тат (Таблица VI). Мы получили лучший конечный результат не потому, что оптимальные f не­много отличаются (оба значения f находятся на соответствующих оптимальных уровнях), а потому, что есть небольшая потеря эффективности при одновремен­ных ставках. Неэффективность является результатом невозможности изменения структуры вашего счета (т.е. рекапитализации) после каждой отдельной ставки, как в игре только по одной рыночной системе. В случае с двумя одновременными

ставками вы можете рекапитализировать счет только 3 раза, в то время как в слу­чае с 8 отдельными ставками вы рекапитализируете счет 7 раз. Отсюда возникает потеря эффективности при одновременных ставках (или при торговле портфелем рыночных систем).


Система В Счет

Сделка P&L 100, 00 -1 -25 75 2 37, 5 112, 5 -1 -28, 13 84, 38 2 42, 19 126, 56 2 63, 28 189, 84 2 94, 92 284, 77 -1 -71, 19 213, 57 -1 -53, 39 160, 18

Оптимальное f соответствует единице на каждые 4 единице на счете


Мы рассмотрели случай, когда одновременные ставки не были коррелирова-ны. Давайте посмотрим, что произойдет при положительной корреляции (+1,00):

Таблица VII Система А Система Б Сделка P&L Сделка P&L Счет 100,00 -1 -12,50 -1 -12,50 75,00 2 18,75 2 18,75 112,50 -1 -14,06 -1 -14,06 84,38 2 21,09 2 21,09 126,56

Оптимальное f соответствует единице на каждые 8 единице на счете


Отметьте, что после 4 одновременных игр при корреляции между рыночными системами +1,00 мы увеличили первоначальный счет 100 единиц до 126,56. Это соответствует TWR = 1,2656, или среднему геометрическому (даже если это ком­бинированные игры) 1,2656 ^ (1/4) =1,06066. Теперь вернемся к случаю с одной ставкой. Обратите внимание, что после 4 игр мы получим 126,56 при начальном счете в 100 единиц. Таким образом, среднее геометрическое равно 1,06066. Это говорит о том, что скорость роста та­кая же, как и при торговле с оптимальными долями на абсолютно коррелиро­ванных рынках. Как только коэффициент корреляции опускается ниже +1,00, скорость роста повышается. Таким образом, мы можем утверждать, что при комби­нировании рыночных систем ваша скорость роста никогда не будет меньше, чем в случае одиночной ставки по каждой системе, независимо от того, насколько высоки корреля­ции, при условии, что добавляемая рыночная система имеет положительное арифмети­ческое математическое ожидание. Вспомним первый пример из этого раздела, когда 2 рыночные системы имели нулевой коэффициент корреляции. Эта рыночная система увеличила счет 100 единиц до 156,86 после 4 игр при среднем геометрическом (156,86/ / 100) ^ (1/4) = 1,119. Теперь давайте рассмотрим случай, когда коэффициент кор­реляции равен -1,00. Так как при таком сценарии никогда не бывает проигрыш­ной игры, оптимальная сумма ставки является бесконечно большой суммой (дру­гими словами, следует ставить 1 единицу на бесконечно малую сумму баланса сче­та). Для примера мы сделаем 1 ставку на каждые 4 единицы на счете и посмотрим на полученные результаты:

Таблица VIII Система А Система Б Сделка P&L Сделка P&L Счет Оптимальное f соответствует 1 единице на каждые 0,00 на балансе (показана 1 единица на каждые 4): 100,00 -1 -12,50 2 25,00 112,50 2 28,13 -1 -14,06 126,56 -1 -15,82 2 31,64 142,38 2 35,60 -1 -17,80 160,18

Из этого раздела можно сделать два вывода. Первый состоит в том, что при од­новременных ставках или торговле портфелем существует небольшая потеря эффективности, вызванная невозможностью рекапитализировать счет после каждой отдельной игры. Второй заключается в том, что комбинирование ры­ночных систем, при условии, что они имеют положительные математические ожидания (даже если они положительно коррелированы), никогда не уменьшит ваш общий рост за определенный период времени. Однако когда вы продолжае­те добавлять все больше и больше рыночных систем, эффективность уменьша­ется. Если у вас есть, скажем, 10 рыночных систем, и все они одновременно не­сут убытки, совокупный убыток может уничтожить весь счет, так как вы не смо­жете уменьшить размер каждого проигрыша, как в случае последовательных сделок. Таким образом, при добавлении новой рыночной системы в портфель польза будет только в двух случаях: когда рыночная система имеет коэффициент корре­ляции меньше 1 и положительное математическое ожидание или же когда систе­ма имеет отрицательное ожидание, но достаточно низкую корреляцию с другими составляющими портфеля, чтобы компенсировать отрицательное ожидание. Каждая добавленная рыночная система вносит постепенно уменьшающийся вклад в среднее геометрическое. То есть каждая новая рыночная система улучшает среднее геометрическое все в меньшей и меньшей степени. Более того, когда вы добавляете новую рыночную систему, теряется общая эф­фективность из-за одновременных, а не последовательных результатов. В неко­торой точке добавление еще одной рыночной системы принесет больше вреда, чем пользы.

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.