My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
211
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Если мы просуммируем значения столбца, который включает 61 ассоциирован­ную вероятность, получим 7,979105. Поэтому среднее геометрическое при f= 0,01 равно:

G = 1,0053555695 ^ (1/7,979105) = 1,00535555695 ^ 0,1253273393 = 1,00066963

Мы можем также рассчитать среднюю геометрическую сделку (GAT). Это сумма, которую вы бы заработали в среднем на контракт за сделку, если бы торговали при этом распределении результатов и при данном значении f.

где G(f) = среднее геометрическое для данного значения f;

W = ассоциированное P&L наихудшего случая.

GAT = (1,00066963 - 1) * (-4899,57 / (-0,01)) = 0,00066963 * 489957 = 328,09

Таким образом, в среднем на контракт можно ожидать выигрыша в 328,09 доллара. Теперь перейдем к следующему значению f, которое должно те­стироваться в соответствии с выбранной процедурой поиска оптимального f. В нашем случае мы проверяем значения f от 0 до 1 с шагом 0,01, так что следую­щим тестируемым значением f будет 0,02. Рассчитаем новый столбец ассоции­рованных HPR, а также найдем TWR и среднее геометрическое. Значение f, ко­торое в результате даст наивысшее среднее геометрическое, является оптималь­ным (для вводных параметров, которые мы использовали). Если бы для данного примера мы продолжили поиск оптимального f, то получили бы f= 0,744 (при расчете оптимального f используется шаг 0,001). Среднее геометрическое в этом случае равно 1,0265. Соответствующая средняя геометрическая сделка составит 174,45 доллара.

Следует отметить, что само по себе значение TWR не столь важно. Когда мы рассчитываем среднее геометрическое параметрически, как в этом примере, TWR просто является промежуточным шагом для получения этого среднего гео­метрического. Теперь мы можем рассчитать, каким было бы наше TWR после Х сделок, возведя среднее геометрическое в степень X. Поэтому если мы хотим рассчитать TWR для 232 сделок при среднем геометрическом 1,0265, то следует возвести 1,0265 в степень 232, что даст 431,79. В таком случае, при торговле с оптимальным f =0,744 можно ожидать прибыль 43079% ((431,79 - 1) * 100) после 232 сделок. Еще одним побочным продуктом, который мы рассчитаем, будет порог гео­метрической торговли (2.02):

Порог геометрической торговли = 330,13/174,45 * -4899,57 / -0,744 = 12462,32

Отметьте, что значение средней арифметической сделки 330,13 доллара не явля­ется результатом, полученным с помощью этого метода, а используется как один из вводных параметров.

Мы можем преобразовать оптимальное f в количество контрактов для торгов­ли с помощью уравнения:

(3.34) K=E/Q,

где К = число контрактов для торговли;

Е = текущий баланс счета.

(3.35) Q=W/(-f),

где W = ассоциированное P&L наихудшего случая;

Отметьте, что переменная Q представляет собой число, на которое вы должны разделить баланс счета, чтобы узнать сколькими контрактами торговать, при этом баланс должен ежедневно корректироваться. Возвращаясь к нашему примеру: Q = -4899,57 / -0,744 = $6585,44

Следовательно, мы будем торговать 1 контрактом на каждые 6585,44 доллара на балансе счета. Для счета размером в 25 000 долларов это означает, что мы будем торговать:

К =25 000/6585,44 = 3,796253553

Так как мы не можем торговать дробными контрактами, то должны округлить это число 3,796253553 вниз до ближайшего целого числа. Поэтому для счета в 25 000 долларов мы будем торговать 3 контрактами. Причина, по которой мы всегда будем округлять вниз, а не вверх, состоит в том, что плата за нахождение ниже оптималь­ного f меньше, чем плата за нахождение выше.

Отметьте, насколько чувствительна торговля оптимальным числом кон­трактов к наихудшему убытку. Наихудший убыток зависит только от того, на сколько стандартных отклонений вы отходите влево от среднего. Данный ограни­чительный параметр, интервал, выраженный в количестве стандартных отклоне­ний, очень важен. В нашем расчете мы выбрали три сигма. Это означает, что мы допускаем проигрыш в три сигма. Однако проигрыш за пределами трех сигма мо­жет сильно нам повредить, если он выйдет слишком далеко за это значение. По­этому вам следует быть очень осторожными с выбором этого ограничительного параметра. От величины интервала зависит очень многое. Заметьте, что для простоты изложения мы не учитывали комиссионные и проскальзывание. Если учитывать комиссионные и проскальзывание, то следу­ет вычесть Х долларов комиссионных и проскальзывания из каждой сделки в самом начале. Затем следует рассчитать среднюю арифметическую сделку и стандартное отклонение на основе 232 измененных сделок и далее выпол­нить уже известную процедуру. Теперь рассмотрим сценарий «что если». Допустим, мы хотим посмотреть, что произойдет, если прибыль в средней сделке уменьшится вдвое (сжатие = 0,5). Да­лее предположим, что рынок становится очень волатильным и дисперсия увели­чивается на 60% (растяжение = 1,6). Подставляя эти параметры в систему, мы мо­жем посмотреть, как они влияют на оптимальное f, и скорректировать нашу тор­говлю до того, как эти изменения произойдут на самом деле. Таким образом, оптимальное f будет равно 0,262, что соответствует торговле 1 контрактом на каж­дые 31 305,92 доллара на балансе счета (так как P&L наихудшего случая сильно за-

висит от растяжения и сжатия). Среднее геометрическое упадет до 1,0027, сред­няя геометрическая сделка уменьшится до 83,02 доллара, a TWR за 232 сделки бу­дет равно 1,869. Такие изменения вызваны уменьшением средней сделки на 50% и увеличением стандартного отклонения на 60%, что вполне может произойти на практике. Также возможно, что будущее будет более благоприятно, чем прошлое. Мы можем проанализировать другую ситуацию. Допустим, мы хотим посмот­реть, что произойдет, если наша средняя прибыль увеличится на 10%. Для этого следует ввести значение сжатия 1,1. Параметры «что если», растяжение и сжатие, крайне важны в управлении капиталом.

Чем ближе ваше распределение торговых P&L к нормальному, тем лучше бу­дет работать метод. Проблема почти всех методов управления деньгами состоит в том, что следует учитывать определенный «коэффициент ухудшения». Здесь ухудшение — это разница между нормальным распределением и распределени­ем, которое вы реально получаете. Разница между ними и есть коэффициент ухудшения, и чем больше этот коэффициент, тем менее эффективным стано­вится метод.

С помощью вышеописанного метода мы определили, что торговля 1 контрак­том на каждые 6585,44 доллара на балансе счета оптимальна. Однако если бы мы совершили эти сделки на практике и определили оптимальное f эмпирически, то оптимальным был бы 1 контракт на каждые 7918,04 доллара на балансе счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрак­тов, чем предлагает эмпирический метод.

Однако, как мы увидим позже, многое говорит в пользу того, что будущее рас­пределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инстру­мента будет нормальным, уже заложено в цену опциона. Точно так же можно ска­зать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.

В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:

1. До того как данные нормированы, их следует привести к текущим ценам пу­тем преобразования всех торговых прибылей и убытков в процентные при­были и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процент­ные прибыли и убытки следует умножить на текущую цену

2. Когда вы перейдете к нормированию этих данных, нормируйте приведен­ные данные, используя среднее и стандартное отклонение приведенных данных.

3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометри­ческой торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению про­цедуры с другой ценой базового инструмента, вы получите то же оптималь­ное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.

4. Количество контрактов для торговли, рассчитываемое с помощью уравне­ния (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.

Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие есте­ственно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормально­го распределения с помощью уравнения (3.21)[16]. Однако нормальное распределение за­частую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом рас­пределения вероятности независимо от того, существует интеграл функции распре­деления или нет.

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.