My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
211
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Для каждой комбинации проведем тест К-С. Комбинацию, которая даст наи­меньшую статистику К-С, будем считать оптимальной для параметров SKALE и KURT (на данный момент). Чтобы провести тест К-С для каждой комбинации, нам необходимо как фактическое распределение, так и теоретическое распределение (определяе­мое параметрами тестируемого характеристического распределения). Мы уже знаем, как создать функцию распределения вероятности X/N, где N яв­ляется общим числом сделок, а Х является рангом (от 1 до N) данной сделки. Теперь нам надо рассчитать ФРВ для теоретического распределения при данных значениях параметров LOC, SCALE, SKEW и KURT. У нас есть характеристическая функция регулируемого распределения, она за­дается уравнением (4.06). Чтобы получить ФРВ из характеристической функции, необходимо найти интеграл характеристической функции. Мы обозначаем ин­теграл, т.е. площадь под кривой характеристической функции в точке X, как N(X). Таким образом, так как уравнение (4.06) дает первую производную интеграла, мы обозначим уравнение (4.06) как N'(X). В большинстве случаев вы не сможете вывести интеграл функции, даже если вы опытный математик. Поэтому вместо интегрирования функции (4.06) мы будем использовать другой метод. Этот метод потребует больших усилий, но он применим к любой функции.

Вероятность для любой точки на графике характеристической функции можно оценить, если распределение представить себе как последователь­ность узких прямоугольников. Тогда для любого данного прямоугольника в распределении вы можете рассчитать вероятность, ассоциированную с этим прямоугольником, как отношение суммы площадей всех прямоугольников слева от вашего прямоугольника (включая площадь вашего прямоугольника) к сумме площадей всех прямоугольников в распределении. Чем больше пря­моугольников вы используете, тем более точными будут полученные вероят­ности. Если бы вы использовали бесконечное число прямоугольников, то ваш расчет был бы точным. Рассмотрим процедуру поиска площадей под кривой характеристического распределения на примере. Допустим, мы хотим найти вероятности, ассоцииро­ванные с каждым отрезком длиной 0,1 в интервале от -3 до +3 сигма. Отметьте, что в таблице (с. 183) рассмотрен интервал от -5 до +5 сигма. Дело в том, что луч­ше выйти на 2 сигмы за ограничительные параметры (-3 и +3 сигма в нашем слу­чае), чтобы получить более точные результаты. Отметьте, что Х — это число стандартных единиц, на которое мы смещены от среднего значения. Далее идут значения четырех параметров. Следующий стол­бец — это столбец N'(X), который отражает высоту кривой в точке Х при этих зна­чениях параметров. N'(X) рассчитывается из уравнения (4.06). Воспользуемся уравнением (4.06). Допустим, нам надо рассчитать N'(X) для Х= -3 со значениями параметров 0,02, 2,76, 0 и 1,78 для LOC, SCALE, SKEW и KURT соответственно. Сначала рассчитаем показатель асимметрии для уравне­ния (4.06). Формула для расчета С задается уравнением (4.07):


Х LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) -5,0 0,02 2,76 0 1,78 0,0092026741 0,0092026741 0,000388 -4,9 0,02 2,76 0 1,78 0,0095350519 0,018737726 0,001178 -4,8 0,02 2,76 0 1,78 0,0098865117 0,0286242377 0,001997 -4,7 0,02 2,76 0 1,78 0,01025857 0,0388828077 0,002847 -4,6 0,02 2,76 0 1,78 0,0106528988 0,0495357065 0,003729 -4,5 0,02 2,76 0 1,78 0,0110713449 0,0606070514 0,004645 -4,4 0,02 2,76 0 1,78 0,0115159524 0,0721230038 0,005598 -4,3 0,02 2,76 0 1,78 0,0119889887 0,0841119925 0,006590 -4,2 0,02 2,76 0 1,78 0,0124929748 0,0966049673 0,007622 -4,1 0,02 2,76 0 1,78 0,0130307203 0,1096356876 0,008699 -4,0 0,02 2,76 0 1,78 0,0136053639 0,1232410515 0,009823 -3,9 0,02 2,76 0 1,78 0,0142204209 0,1374614724 0,010996 -3,8 0,02 2,76 0 1,78 0,0148798398 0,1523413122 0,012224 -3,7 0,02 2,76 0 1,78 0,0155880672 0,1679293795 0,013509 -3,6 0,02 2,76 0 1,78 0,0163501266 0,184279506 0,014856 -3,5 0,02 2,76 0 1,78 0,0171717099 0,2014512159 0,016270 -3,4 0,02 2,76 0 1,78 0,0180592883 0,2195105042 0,017756 -3,3 0,02 2,76 0 1,78 0,0190202443 0,2385307485 0,019320 -3,2 0,02 2,76 0 1,78 0,0200630301 0,2585937786 0,020969 -3,1 0,02 2,76 0 1,78 0,0211973606 0,2797911392 0,022709 -3,0 0,02 2,76 0 1,78 0,0224344468 0,302225586 0,024550 -2,9 0,02 2,76 0 1,78 0,0237872819 0,3260128679 0,026499 -2,8 0,02 2,76 0 1,78 0,0252709932 0,3512838612 0,028569 -2,7 0,02 2,76 0 1,78 0,0269032777 0,3781871389 0,030770 -2,6 0,02 2,76 0 1,78 0,0287049446 0,4068920835 0,033115 -2,5 0,02 2,76 0 1,78 0,0307005967 0,4375926802 0,035621
Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) -2,4 0,02 2,76 0 1,78 0,0329194911 0,4705121713 0,038305 -2,3 0,02 2,76 0 1,78 0,0353966362 0,5059088075 0,041186 -2,2 0,02 2,76 0 1,78 0,0381742015 0,544083009 0,044290 -2,1 0,02 2,76 0 1,78 0,041303344 0,5853863529 0,047642 -2,0 0,02 2,76 0 1,78 0,0448465999 0,6302329529 0,051276 -1,9 0,02 2,76 0 1,78 0,0488810452 0,6791139981 0,055229 -1,8 0,02 2,76 0 1,78 0,0535025185 0,7326165166 0,059548 -1,7 0,02 2,76 0 1,78 0,0588313292 0,7914478458 0,064287 -1,6 0,02 2,76 0 1,78 0,0650200649 0,8564679107 0,069511 -1,5 0,02 2,76 0 1,78 0,0722644105 0,9287323213 0,075302 -1,4 0,02 2,76 0 1,78 0,080818341 1,0095506622 0,081759 -1,3 0,02 2,76 0 1,78 0,0910157581 1,1005664203 0,089007 -1,2 0,02 2,76 0 1,78 0,1033017455 1,2038681658 0,097204 -1,1 0,02 2,76 0 1,78 0,1182783502 1,322146516 0,106550 -1,0 0,02 2,76 0 1,78 0,1367725028 1,4589190187 0,117308 -0,9 0,02 2,76 0 1,78 0,1599377464 1,6188567651 0,129824 -0,8 0,02 2,76 0 1,78 0,1894070001 1,8082637653 0,144560 -0,7 0,02 2,76 0 1,78 0,2275190511 2,0357828164 0,162146 -0,6 0,02 2,76 0 1,78 0,2776382822 2,3134210986 0,183455 -0,5 0,02 2,76 0 1,78 0,3445412618 2,6579623604 0,209699 -0,4 0,02 2,76 0 1,78 0,4346363128 3,0925986732 0,242566 -0.3 0,02 2,76 0 1,78 0,5550465747 3,6476452479 0,284312 -0,2 0,02 2,76 0 1,78 0,7084848615 4,3561301093 0,337609 -0,1 0,02 2,76 0 1,78 0,8772840491 5,2334141584 0,404499 0,0 0,02 2,76 0 1,78 1 6,2334141584 0,483685 0,1 0,02 2,76 0 1,78 0,9363557429 7,1697699013 0,565363 0,2 0,02 2,76 0 1,78 0,776473162 7,9462430634 0,637613
Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) 0,3 0,02 2,76 0 1,78 0,6127219404 8,5589650037 0,696211 0,4 0,02 2,76 0 1,78 0,4788099392 9,0377749429 0,742253 0,5 0,02 2,76 0 1,78 0,377388991 9,4151639339 0,778369 0,6 0,02 2,76 0 1,78 0,3020623672 9,7172263011 0,807029 0,7 0,02 2,76 0 1,78 0,2458941852 9,9631204863 0,830142 0,8 0,02 2,76 0 1,78 0,2034532796 10,1665737659 0,849096 0,9 0,02 2,76 0 1,78 0,1708567846 10,3374305505 0,864885 1,0 0,02 2,76 0 1,78 0,1453993995 10,48282995 0,878225 1,1 0,02 2,76 0 1,78 0,1251979811 10,6080279311 0,889639 1,2 0,02 2,76 0 1,78 0,1089291462 10,7169570773 0,899515 1,3 0,02 2,76 0 1,78 0,0956499316 10,8126070089 0,908145 1,4 0,02 2,76 0 1,78 0,0846780659 10,8972850748 0,915751 1,5 0,02 2,76 0 1,78 0,0755122067 10,9727972814 0,922508 1,6 0,02 2,76 0 1,78 0,0677784099 11,0405756913 0,928552 1,7 0,02 2,76 0 1,78 0,0611937787 11,10176947 0,933993 1,8 0,02 2,76 0 1,78 0,0555414402 11,1573109102 0,938917 1,9 0,02 2,76 0 1,78 0,0506530744 11,2079639847 0,943396 2,0 0,02 2,76 0 1,78 0,0463965419 11,2543605266 0,947490 2,1 0,02 2,76 0 1,78 0,0426670018 11,2970275284 0,951246 2,2 0,02 2,76 0 1,78 0,0393804519 11,3364079803 0,954707 2,3 0,02 2,76 0 1,78 0,0364689711 11,3728769515 0,957907 2,4 0,02 2,76 0 1,78 0,0338771754 11,4067541269 0,960874 2,5 0,02 2,76 0 1,78 0,0315595472 11,4383136741 0,963634 2,6 0,02 2,76 0 1,78 0,0294784036 11,4677920777 0,966209 2,7 0,02 2,76 0 1,78 0,0276023341 11,4953944118 0,968617 2,8 0,02 2,76 0 1,78 0,0259049892 11,5212994011 0,970874 2,9 0,02 2,76 0 1,78 0,0243641331 11,5456635342 0,972994
Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) 3,0 0,02 2,76 0 1,78 0,0229608959 11,5686244301 0,974990 3,1 0,02 2,76 0 1,78 0,0216791802 11,5903036102 0,976873 3,2 0,02 2,76 0 1,78 0,0205051855 11,6108087957 0,978653 3,3 0,02 2,76 0 1,78 0,0194270256 11,6302358213 0,980337 3,4 0,02 2,76 0 1,78 0,0184344179 11,6486702392 0,981934 3,5 0,02 2,76 0 1,78 0,0175184304 11,6661886696 0,983451 3,6 0,02 2,76 0 1,78 0,0166712734 11,682859943 0,984893 3,7 0,02 2,76 0 1,78 0,0158861285 11,6987460714 0,986266 3,8 0,02 2,76 0 1,78 0,0151570063 11,7139030777 0,987576 3,9 0,02 2,76 0 1,78 0,014478628 11,7283817056 0,988826 4,0 0,02 2,76 0 1,78 0,0138463263 11,742228032 0,990020 4,1 0,02 2,76 0 1,78 0,0132559621 11,7554839941 0,991164 4,2 0,02 2,76 0 1,78 0,012703854 11,7681878481 0,992259 4,3 0,02 2,76 0 1,78 0,0121867187 11,7803745668 0,993309 4,4 0,02 2,76 0 1,78 0,0117016203 11,7920761871 0,994316 4,5 0,02 2,76 0 1,78 0,0112459269 11,8033221139 0,995284 4,6 0,02 2,76 0 1,78 0,0108172734 11,8141393873 0,996215' 4,7 0,02 2,76 0 1,78 0,0104135298 11,8245529171 0,997110 4,8 0,02 2,76 0 1,78 0,0100327732 11,8345856903 0,997973 4,9 0,02 2,76 0 1,78 0,0096732643 11,8442589547 0,998804 5,0 0,02 2,76 0 1,78 0,0093334265 11,8535923812 0,999606

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.