Ознакомительная версия.
Отметьте, что оптимальное f приближается к 0, когда мы отодвигаем оба ограничительных параметра. Более того, так как проигрыш наихудшего случая увеличивается и делится на все меньшее оптимальное f, наше f$, т.е. сумма финансирования 1 единицы, также приближается к бесконечности.
Проблему наилучшего выбора ограничительных параметров можно сформулировать в виде вопроса: где могут произойти в будущем наилучшие и наихудшие сделки (когда мы будем торговать в этой рыночной системе)? Хвосты распределения в действительности стремятся к плюс и минус бесконечности, и нам следует финансировать каждый контракт на бесконечно большую сумму (как в последнем примере, где мы раздвигали обе границы). Конечно, если мы собираемся торговать бесконечно долгое время, наше оптимальное f в долларах будет бесконечно большим. Но мы не собираемся торговать в этой рыночной системе вечно. Оптимальное f, при котором мы собираемся торговать в этой рыночной системе, является функцией предполагаемых наилучших и наихудших сделок. Вспомните, если мы бросим монету 100 раз и запишем, какой будет самая длинная полоса решек подряд, а затем бросим монету еще 100 раз, то полоса решек после 200 бросков будет скорее всего больше, чем после 100 бросков. Таким же образом, если проигрыш наихудшего случая за нашу историю 232 сделок равнялся 2,96 сигма (для удобства возьмем 3 сигма), тогда в будущем мы должны ожидать проигрыш больше 3 сигма. Поэтому вместо того, чтобы ограничить наше распределение прошлой историей сделок (-2,96 и +6,94 сигма), мы ограничим его -4 и +6,94 сигма. Нам, вероятно, следует ожидать, что в будущем именно верхняя, а не нижняя граница будет нарушена. Однако это обстоятельство мы не будем принимать в расчет по нескольким причинам. Первая состоит в том, что торговые системы в будущем ухудшают свою результативность по сравнению с работой на исторических данных, даже если они не используют оптимизируемых параметров. Все сводится к принципу, что эффективность механических торговых систем постепенно снижается. Во-вторых, тот факт, что мы платим меньшую цену за ошибку в оптимальном f при смещении влево, а не вправо от пика кривой f, предполагает, что следует быть более консервативными в прогнозах на будущее. Мы будем рассчитывать параметрическое оптимальное f при ограничительных параметрах -4 и +6,94 сигма, используя 300 равноотстоящих точек данных. Однако при расчете вероятностей для каждой из 300 равноотстоящих ячеек данных важно, чтобы мы рассмотрели распределение на 2 сигмы до и после выбранных ограничительных параметров. Поэтому мы будем определять ассоциированные вероятности, используя ячейки в интервале от -6 до +8,94 сигма, даже если реальный интервал -4 — +6,94 сигма. Таким образом, мы увеличим точность результатов. Использование оптимальных параметров 0,02, 2,76, 0 и 1,78 теперь даст нам оптимальное f =0,837, или 1 контракт на каждые 7936,41 доллара. Пока ограничительные параметры не нарушаются, наша модель точна для выбранных границ. Пока мы не ожидаем проигрыша больше 4 сигма ($330,13 -(1743,23 * 4) =-$6642,79) или прибыли больше 6,94 сигма ($330,13 + + (1743,23 * 6,94) = $12 428,15), можно считать, что границы распределения будущих сделок выбраны точно. Возможное расхождение между созданной моделью и реальным распределением является слабым местом такого подхода, то есть оптимальное f, полученное из модели, не обязательно будет оптимальным. Если наши выбранные параметры будут нарушены в будущем, f может перестать быть оптимальным. Этот недостаток можно устранить с помощью опционов, которые позволяют ограничить возможный проигрыш заданной суммой. Коль скоро мы обсуждаем слабость данного метода, необходимо указать на последний его недостаток. Следует иметь в виду, что реальное распределение торговых прибылей и убытков является распределением, где параметры постоянно изменяются, хотя и медленно. Следует периодически повторять настройку по торговым прибылям и убыткам рыночной системы, чтобы отслеживать эту динамику.
Проведение тестов «что если»
После того как найдено параметрическое оптимальное f, можно реализовывать сценарии «что если» с помощью полученной функции распределения. Для этого нужно варьировать параметры функции распределения LOC, SCALE, SKEW и KURT для моделирования различных ожидаемых результатов (различных распределений, которые могут быть в будущем). Мы знаем, как применять процедуру растяжения и сжатия в нормальном распределении, и похожим образом можем работать с параметрами LOC, SCALE, SKEW и KURT регулируемого распределения.
Рисунок 4-12 Изменение параметра расположения распределения
Сценарии «что если» при параметрическом подходе помогают смоделировать изменения фактического распределения торговых P&L. Параметрические методы позволяют увидеть воздействие изменений на распределение фактических торговых прибылей и убытков до того, как они произойдут.
Когда вы работаете с параметрами, следует помнить о важной детали. При поиске оптимального f вместо того, чтобы изменять LOC, т.е. расположение распределения, лучше изменять долларовую арифметическую среднюю сделку, используемую в качестве входного данного. Это видно из рисунка 4-12. Отметьте (см. рисунок 4-12), что изменение параметра расположения LOC передвигает распределение вправо или влево в «окне» ограничительных параметров, но сами ограничительные параметры при этом не двигаются. Таким образом, изменение параметра LOC также затрагивает количество равноотстоящих точек данных слева и справа от моды распределения. Если изменить фактическое среднее арифметическое (или использовать переменную сжатия при поиске f в нормальном распределении), «окно» ограничительных параметров передвинется. Когда вы изменяете арифметическую среднюю сделку или изменяете переменную сжатия в механизме нормального распределения, у вас остается то же число равноотстоящих точек данных справа и слева от моды распределения.
Приведение f к текущим ценам
В методе, описанном в этой главе, были использованы неприведенные данные. Мы можем использовать тот же подход для приведенных данных. Если необходимо определить приведенное параметрическое оптимальное f, то следует преобразовать необработанные торговые прибыли и убытки в процентные повышения и понижения, основываясь на уравнениях с (2.10а) по (2.10в). Затем надо преобразовать полученные процентные прибыли и убытки, умножив их на текущую цену базового инструмента. Например, P&L номер 1 составляет 0,18. Допустим, что цена входа в этой сделке равна 100,50, тогда процентное повышение для этой сделки равно 0,18/100,50=0,001791044776. Теперь допустим, что текущая цена базового инструмента равна 112,00. Умножив 0,001791044776 на 112,00, получим приведенное значение P&L, равное 0,2005970149. Если мы хотим использовать приведенные данные, то следует провести аналогичную операцию со всеми 232 торговыми прибылями и убытками. Затем следует рассчитать среднее арифметическое и стандартное отклонение по приведенным сделкам и использовать уравнение (3.16) для нормирования данных. Далее необходимо найти набор оптимальных параметров LOC, SCALE, SKEW и KURT по приведенным данным так же, как было показано в этой главе для неприведенных данных. Процедура определения оптимального f, среднего геометрического и TWR аналогична уже рассмотренной нами. Побочные продукты: средняя геометрическая сделка, средняя арифметическая сделка и порог геометрической торговли — действительны только для текущей цены базового инструмента. Если цена базового инструмента изменится, расчет следует повторить, вернувшись к первому шагу, умножив процентные прибыли и убытки на новую цену базового инструмента. Когда вы перейдете к этой процедуре с другой ценой базового инструмента, то получите такое же оптимальное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.
Количество контрактов для торговли, определяемое уравнением (3.34), также должно измениться. Ассоциированное P&L наихудшего случая (переменная W из уравнения (3.35)) будет другим в уравнении (3.34) в результате изменений, вызванных приведением данных к другой текущей цене.
Оптимальное F для других распределений и настраиваемых кривых
Существует много других способов, с помощью которых можно определить параметрическое оптимальное f. В предыдущей главе мы рассмотрели процедуру поиска оптимального f для нормально распределенных данных. Итак, у нас есть процедура, которая дает оптимальное f для любого нормально распределенного явления. Та же процедура используется для поиска оптимального/в любом распределении, если существует функция распределения (подобные функции описаны для многих других распространенных распределений в приложении В). Когда функции распределения не существует (т.е. когда функция плотности вероятности не интегрируется), оптимальное f можно найти с помощью численного метода, описанного в этой главе, приблизительно рассчитав функцию распределения.
Ознакомительная версия.