My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
211
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

где Р = вероятность сценария i;

А = результат сценария i;

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено толь­ко в том случае, если математическое ожидание больше нуля. Когда матема­тическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

И наконец, вы должны рассмотреть максимально возможный спектр резуль­татов. Другими словами, следует рассмотреть 99% возможных исходов. Многие сценарии можно сделать шире, так что вам не надо будет расписывать 10 000 сце­нариев, чтобы охватить 99% спектра. При расширении сценариев не следует

слишком упрощать ситуацию, выбрав только три сценария: оптимистический, пессимистический и нейтральный. В этом случае полученные ответы будут слиш­ком грубы, чтобы иметь какую-либо практическую ценность. Захотите ли вы ис­кать оптимальное f для торговой системы по трем сделкам?

Какое количество сценариев оптимально? Используйте то количество, с ко­торым вы справитесь. Здесь хорошим помощником будет компьютер. Допус­тим, речь идет о компании АБВ и о размещении ее нового продукта на рынке отсталой далекой страны. Рассмотрим пять возможных сценариев (в действи­тельности сценариев должно быть больше, но мы возьмем пять для примера). Эти пять сценариев отражают то, что может произойти в данной стране в буду­щем, — то есть вероятность определенных событий и прибыль или убыток от инвестирования.


Сценарий Вероятность Результат Война 0,1 -$500 000 Кризис 0,2 -$200 000 Застой 0,2 0 Мир 0,45 $500 000 Процветание 0,05 $1000000 Сумма 1,00

Таким образом, сумма вероятностей равна 1. Обратите внимание, что у нас есть 1 сце­нарий с отрицательным результатом, но математическое ожидание больше нуля:

(0,1 * -$500 000) + (0,2 * -$200 000) +... = $185 000

С таким набором сценариев мы можем использовать данный метод. Отметьте, что если бы мы использовали метод наиболее вероятного результата, то пришли бы к заключению, что в этой стране скорее всего будет мир, и действова­ли бы, исходя из этой единственной возможности, только расплывчато осознавая наличие других исходов.

Рассчитаем оптимальное f. Как мы уже знаем, оптимальное f (это число между О и 1) максимизирует среднее геометрическое:

поэтому

Далее, мы можем рассчитать фактическое TWR:

(4.17) TWR= Среднее геометрическое^X,

где N= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария i;

А = результат сценария i;

Р.= вероятность сценария i;

W= наихудший результат среди всех сценариев N;

Х= число, характеризующее повторение этого сценария, когда мы инвестируем Х раз.

TWR, полученное из уравнения (4.14), является промежуточным значением для расчета среднего геометрического. После того как мы найдем среднее геометри­ческое, фактическое TWR можно получить с помощью уравнения (4.17).

Мы можем произвести расчеты по этим уравнениям следующим образом. Сначала выберем схему оптимизации, то есть способ поиска f, максимизирующего уравнение. Можно сделать это с помощью подбора Ют 0,01 до 1, используя метол итераций или параболическую интерполяцию. Затем мы должны определить наихудший возможный результат для всех рассматриваемых сценариев независимо от того, насколько малы вероятности подобных сценариев. В примере с корпорацией АБВ наихудшие ожидаемые потери — это -500 000 долларов. Теперь для каждого сценария мы должны сначала разделить наихудший возможный результат на отрицательное f. В примере с корпорацией АБВ мы собираемся просмотреть значения Ют 0,01 до 1. Начнем со значения f=0,01. Теперь, если мы разделим наихудший возможный результат рассматриваемых сценариев на отрицательное значение f, то получим:

-$500 000 / -0,01 = $50 000 000

Для каждого сценария разделим его результат на полученное только что зна­чение. Так как исход первого сценария является наихудшим с убытком 500 000 долларов, то:

-$500 000 / $50 000 000 = -0,01

Теперь прибавим это значение к 1:

1 + (-0,01) = 0,99

Наконец, возведем полученный ответ в степень вероятности осуществления данного сценария (в нашем примере 0,1):

0,99^0,1=0,9989954713

Затем перейдем к следующему сценарию под названием «Кризис» с вероятнос­тью 0,2 проигрыша 200 000 долларов. Наш результат наихудшего случая все еще -$500 000. Значение f, с которым мы работаем, по-прежнему 0,01, поэтому чис­ло, на которое надо разделить результат этого сценария, составляет 50 000 000 долларов:

-$200 000/$50 000 000 = -0,004

Проведем дальнейшие вычисления для получения HPR:

1 + (-0,004) = 0,996 0,99^0,2 = 0,9991987169

Если мы рассмотрим остальные сценарии при тестируемом значении f=0,01, то найдем три значения HPR, соответствующие последним 3 сценариям:


Застой 1,0

Мир 1,004487689

Процветание 1,000990622

После того как найдены все HPR для данного значения f, необходимо перемно­жить полученные HPR:


0,9989954713*0,9991987169*1,0*1,004487689 * 1,000990622=1,003667853

Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет воз­ведение этого значения в степень, равную единице, деленной на сумму вероятно­стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометри­ческое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим. соответствующим значению f= 0,01. Теперь перейдем к значению f= 0,02 и по­вторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому f. Мы будем продолжать, пока не дойдем до такого значения f, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при f=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное f, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма f. Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой f. Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным f). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это мо­гут быть не только деньги, и метод будет работать. Данный подход можно ис­пользовать для любого количественного решения в среде благоприятной нео­пределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное f. полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под­ход даст вам наибольший геометрический рост капитала. Конечно, результат бу­дет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказан­ное ранее об оптимальном f применимо здесь, и это означает также, что ожидае­мые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеря­ны в какое-либо время в будущем. Например, вы используете данный метод, что­бы определить сумму средств, предназначенных для инвестирования в акции. До­пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Други­ми словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торго­вые решения, основываясь на фундаментальных данных. Вы намечаете различ­ные сценарии, которые могут произойти в процессе торговли. Чем больше сцена­риев и чем точнее сценарии, тем лучше будут полученные результаты. Предполо­жим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.