Каким бы притягательным и загадочным ни было измерение параметров далекого двойного пульсара, общая теория ощутимо присутствует даже здесь, на Земле, в контексте гораздо более распространенного феномена. Система спутников GPS охватывает весь мир, а ее успешное функционирование зависит от точности теорий Эйнштейна. Действующая 24 часа в сутки сеть спутников расположена вокруг Земли на высоте 20 тысяч километров, причем каждый спутник ежедневно делает два полных оборота вокруг планеты. Эти спутники применяются для триангуляции местоположения различных объектов на Земле с использованием точных бортовых часов. Спутники, размещенные на такой высокой орбите, находятся в более слабом гравитационном поле, а это означает, что их пространство-время искривлено иначе, чем для аналогичных часов на Земле. В итоге часы на спутниках спешат на 45 микросекунд в день. Кроме этого гравитационного эффекта, спутники еще и движутся с высокой скоростью (около 14 тысяч километров в час), поэтому вследствие замедления времени, предсказанного специальной теорией относительности Эйнштейна, часы отстают на семь микросекунд в день. В совокупности эти два эффекта приводят к тому, что часы на орбите спешат на 38 микросекунд в день. На первый взгляд может показаться, что это не так уж много, но игнорирование данного эффекта привело бы к полному выходу системы GPS из строя всего за несколько часов. Свет перемещается со скоростью около 30 сантиметров за одну наносекунду, которая составляет одну тысячемиллионную долю секунды. Следовательно, 38 микросекунд эквивалентны десяти километрам в день, что сделало бы невозможной точную навигацию. Решить эту проблему весьма просто: для этого достаточно настроить спутниковые часы так, чтобы они отставали на 38 микросекунд в день, – это позволит системе работать с точностью до метров, а не километров.
Эффект часов, размещенных на спутниках системы GPS и спешащих по сравнению с часами на Земле, легче понять с помощью материала, изложенного в данной главе. Фактически ускорение часов представляет собой прямое следствие принципа эквивалентности. Для того чтобы разобраться с этим, давайте мысленно перенесемся в 1959 год, в лабораторию Гарвардского университета. Роберт Паунд[64] и Глен Ребка[65] решили провести эксперимент, позволяющий «уронить» свет с крыши лаборатории в подвал, расположенный на 22,5 метра ниже. Если свет будет падать в строгом соответствии с принципом эквивалентности, то по мере его падения энергия должна увеличиваться в точности на ту же величину, что и в случае любого другого предмета, брошенного с этой же высоты[66]. Нам необходимо знать, что произойдет со светом по мере увеличения энергии. Другими словами, что Паунд и Ребка рассчитывали увидеть в подвале лаборатории в момент прибытия лучей света? Существует единственный способ, позволяющий свету увеличивать свою энергию. Мы знаем, что свет не может повысить скорость, поскольку уже перемещается с универсальной предельной скоростью, однако может увеличить частоту. Помните: свет можно рассматривать как волновое движение – серию пиков и впадин, напоминающих волны, распространяющиеся на поверхности пруда от брошенного камня. Частота таких волн – это просто количество пиков (или впадин), проходящих через конкретную точку каждую секунду, а пики и впадины можно использовать в качестве тактового сигнала часов. В частности, представьте, что в ходе эксперимента Паунд находится рядом с источником света на крыше башни.
Он может подсчитать, сколько пиков световой волны приходится на один удар его сердца. Теперь предположим, что Ребка также находится рядом с аналогичным источником света. Он тоже может подсчитать, какое количество пиков волны соответствует одному удару его сердца. Ответ Ребки должен совпадать с ответом его коллеги, так как у них идентичные источники света и идентичные сердца. Конечно, они получат абсолютно одинаковые показатели только в том случае, если у них одинаковые сердца, а это не так. Но допустим, что их сердца действительно бьются как одно. Теперь представьте, что Ребка, сидя в подвале, наблюдает за тем, как прибывает свет, выпущенный из источника света Паунда, расположенного на крыше. Свет увеличил свою энергию, а значит, повысилась его частота, и Ребка обнаружит, что пики световых волн прибывают чаще, чем в случае, когда их испускает расположенный рядом источник света. Однако эти пики синхронизированы с частотой пульса его коллеги. Это означает, что в восприятии сидящего в подвале Ребки сердце Паунда бьется чаще, а следовательно, он будет стареть быстрее. Это крохотный эффект, соответствующий ускорению времени на одну секунду за 13 миллионов лет. Следует отдать должное мастерству и изобретательности Паунда и Ребки, которым удалось разработать эксперимент, способный зафиксировать данный эффект. Именно такое ускорение времени происходит в часах, расположенных на спутниках системы GPS. Эти часы размещены гораздо выше, чем 22,5 метра в лаборатории Гарвардского университета, но основная идея та же: в более слабом гравитационном поле часы идут быстрее.
Общая теория относительности Эйнштейна, получившая прекрасное подтверждение в ходе экспериментов, привела к тому, что мы начали воспринимать пространство-время не как неизменную смесь пространства и времени, а как более динамичную сущность – то есть то, на что можно воздействовать посредством присутствия массы и энергии, поскольку благодаря уравнению E = mc² нам известно, что они взаимозаменяемы. С другой стороны, динамичная структура пространственно-временного континуума определяет движение объектов сквозь него. Мы больше не должны воспринимать пространство как инертную среду, в которой происходит все сущее, а время – как непреложное и абсолютное тиканье гигантских часов, расположенных на небесах. Пожалуй, главный урок, который следует извлечь из этого кардинального пересмотра картины мира, состоит в том, что неразумно экстраполировать опыт за пределы той области, в которой он получен. Почему быстро движущиеся объекты должны вести себя в соответствии с теми же законами, что и медленно движущиеся, с которыми мы сталкиваемся в повседневной жизни? Разве мы имеем право делать выводы о поведении массивных объектов, изучив только более легкие?
Разумеется, повседневный опыт оказался плохим ориентиром и, как показал нам Эйнштейн, более глубокий уровень понимания гораздо элегантнее. Объединив в единое целое такие на первый взгляд несовместимые концепции, как масса и энергия, пространство и время, а также в конечном счете гравитация, специальная и общая теории относительности Эйнштейна навсегда останутся двумя величайшими достижениями человеческого разума. В будущем на основе новых наблюдений и экспериментов может сформироваться новое понимание происходящего, которое приведет к пересмотру представленных в этой книге идей. В действительности многие физики уже сейчас говорят о новом подходе к поиску более точных и более широко применимых теорий. Скромный урок, из которого следует, что не стоит экстраполировать опыт за пределы области исследований, распространяется не только на теорию относительности. В XX столетии в физике произошел еще один великий прорыв – открытие квантовой теории, которая позволяет объяснить поведение всех объектов на атомарном и даже еще более детальном уровне. Никто никогда не изучал устройство Вселенной на уровне малых расстояний, опираясь только на повседневный опыт. Люди, непосредственные наблюдения которых ограничены достаточно крупными объектами, воспринимают квантовую теорию как нечто противоречащее здравому смыслу, но в XX веке она лежит в основе многих неотъемлемых элементов современной жизни – от медицинской диагностики до самых передовых компьютерных технологий, поэтому мы должны принять ее независимо от нашего к ней отношения.
Сегодня физики столкнулись с дилеммой. Общая теория относительности Эйнштейна, лучшая из имеющихся теория гравитации, не согласуется с квантовой теорией. Либо одну из них, либо обе необходимо пересмотреть. Действительно ли пространство-время «распадается» на уровне малых расстояний? Может, на самом деле его вообще нет, а есть только иллюзия, сформировавшаяся под влиянием постоянно растущего множества «происходящих вещей»? Действительно ли фундаментальные объекты Вселенной представляют собой малейшие вибрации энергии, известные как струны? Или ответ содержится в какой-то другой теории, которую еще предстоит открыть? Это передний край фундаментальной физики, а ученые, которые работают в этой области, взволнованно и с вдохновением заглядывают в неизведанное.