Почти четыре тысячи лет назад китайские путешественники и полководцы пользовались специальными повозками, в которых поставлены были фигуры, всегда обращавшие простертые руки на юг и таким образом указывавшие путь в необозримых степях и бесконечных однообразных песчаных пустынях Азии. В III веке нашей эры китайцы использовали уже стальные пластинки, подвешенные на шелковой нити, — компас. И только где-то около XI или XII века этот прибор стал известен европейским народам. С тех пор его магнитная стрелка помогает морякам находить путь по синему зеркалу мирового океана.
Что же такое магнетизм? Все ли металлы обладают этим свойством?
Да, все металлы способны намагничиваться в той или иной степени. Но сильно намагничиваются только четыре чистых металла — железо, кобальт, никель и гадолиний. Последний принадлежит к группе редкоземельных элементов. В чистом виде его можно найти лишь в прекрасно оборудованных химических лабораториях.
Хорошо намагничиваются многие сплавы этих металлов, например сталь и чугун. Их называют ферромагнитными металлами и сплавами.
Волшебная точка температуры. Выше нее металл перестает быть магнитным.
Значительно слабее намагничиваются алюминий, платина, хром, титан, марганец. Только очень чувствительные приборы позволяют установить, что они обладают магнитными свойствами. Их называют парамагнитными.
Чрезвычайно интересно ведет себя другая группа металлов: к ним относятся олово, свинец, медь, серебро, золото. Они намагничиваются тоже очень слабо, но к магниту не притягиваются, а наоборот, отталкиваются от него. Эти металлы называются диамагнитными.
Разница в электромагнитных свойствах разных веществ скрыта глубоко, в самой сердцевине металла, в его атоме.
Еще в начале прошлого столетия выдающийся французский физик и математик Андре Мари Ампер выдвинул гипотезу о том, что внутри железа существует огромное количество «круговых токов», «витков с током». Пока нет внешнего магнитного или электромагнитного поля, они расположены хаотически и создаваемые ими магнитные поля взаимно уничтожают друг друга. Однако, если влиянием постороннего магнитного поля сориентировать все эти элементарные витки в одном направлении, их магнитные поля сложатся, и железо станет магнитным.
Магниты работают во многих механизмах и устройствах. В частности, это магнит рождает ультразвуковой луч эхолота.
Французский ученый, даже не подозревавший о внутреннем строении атома, как ни странно, оказался прав. Он в своей гипотезе исходил из простого знания того, что вокруг катушки, по которой протекает ток, возникает электромагнитное поле. Сегодня мы знаем, что электрический ток представляет собой поток электронов. Всякое движение электрона вызывает магнитное поле, в том числе и его вращение вокруг собственной оси. И в атоме, который представляет собой ядро, окруженное движущимися вокруг него электронами, существует целый ряд источников магнитного поля. Магнитными свойствами обладает и ядро атома, и каждый из его электронов, и движение электрона вокруг ядра также вызывает магнитное поле.
Магниты управляют «грифелем» электронного «карандаша» в кинескопе.
В диамагнитных телах магнитные поля электронов и ядра взаимно погашают друг друга, поэтому их атомы в целом не обладают магнитными свойствами. Когда же они оказываются в магнитном поле, они становятся крохотными магнитиками, причем северный полюс каждого такого диамагнитного атома становится против северного полюса вызвавшего его магнита и тело в целом отталкивается от магнита.
У парамагнитных и ферромагнитных материалов магнитные поля электронов и ядра, складываясь, усиливают друг друга. Каждый атом в них обладает магнитными свойствами. В парамагнитных материалах, однако, тепловое движение атомов мешает им сориентироваться строго в одном направлении, и поэтому их общий магнетизм невелик.
В ферромагнитных материалах особые электрические силы обеспечивают одинаковую магнитную ориентацию целых участков кристаллов металла. Такие участки называют доменами. При намагничивании ферромагнита эти домены постепенно смещают свои полюса в одном направлении и тело приобретает сильные магнитные свойства.
Чем выше мы поднимаем температуру металла, тем меньшими становятся его магнитные свойства. Это и понятно: тепловое движение расшатывает атомы, разрушает их одинаковую магнитную ориентацию. И при какой-то температуре даже самый ферромагнитный материал теряет свои магнитные свойства. Температуры, при которых это происходит, называются точками Кюри. Они названы так в честь знаменитого французского ученого Пьера Кюри, Заметили ученые и еще одну закономерность. Многие ферромагнитные вещества при намагничивании несколько изменяют свою величину и форму. Это явление назвали магнитострикцией. Обратное свойство — изменять величину намагниченности под действием механического давления — называется механострикцией.
Необходимо здесь отметить и еще одно — связь магнитного поля и поля, создаваемого текущим по проводнику электрическим током. Как удалось установить ученым, магнитное поле является частным случаем электромагнитного поля. Они тесно взаимно связаны. И с помощью электромагнитного поля можно намагнитить стальной стержень. Для этого надо его только поместить в электромагнитное поле. А пересекая магнитным полем проволочку, мы вызываем в ней электрический ток.
Мы не будем здесь углубляться в область электромагнетизма, ибо это очень далеко отвлечет нас от темы.
В периодической системе элементов, составленной великим Менделеевым, каждому металлу отведено особое место. Каждый занимает отдельную клетку со своим собственным номером.
Периодическая система элементов Менделеева является лучшим путеводителем по миру металлов. К какой бы клетке в ней мы ни подошли, даже к жилищу самого редкого и тщательно скрываемого природой металла, мы уже по номеру его можем получить целый ряд сведений. Так же, как по номеру квартиры в паспортном столе можно узнать целый ряд сведений о ее обитателе: и год рождения, и национальность, и образование…
Мы будем часто обращаться за справками в «адресный стол» периодической системы элементов. Но для нас, интересующихся не столько самими металлами, сколько тем, что они дают человеку и что смогут дать, вряд ли будет целесообразно рассматривать по очереди все металлы. И осмотр их мы поведем, начиная с более важных для современного человечества. Поэтому нам удобнее другие, не общепринятые в технике классификации, хотя и менее точные и строгие, чем в таблице Менделеева.
Прежде всего разделим металлы на две неравные группы — черные и цветные.
К черным металлам относится одно железо и его многочисленные сплавы. Действительно, деление явно неравное: один против семидесяти девяти. Но в человеческой культуре этот один металл играет, пожалуй, не меньшую роль, чем все остальные. Да вот лучшая иллюстрация: около 94 процентов по весу от веса всех добываемых на земном шаре металлов падает на железо. Убедительная цифра!
Отделив от могучего братства металлов черный металл, мы сделали огромное дело. Но нелегко разобраться и в оставшихся семидесяти девяти цветных металлах и их сплавах. (Кстати, они действительно цветные: голубовато-серый свинец, желтое золото, красная медь, белый никель и т. д. Но есть среди цветных металлов и значительно более темные, чем сталь. Название черные и цветные поэтому надо считать чисто условным.)
Обычно цветные металлы делят на две группы: тяжелые и легкие. В обеих группах есть и очень важные для человека металлы, и почти или совсем в настоящее время не используемые.
К тяжелым металлам относятся медь, никель, свинец, олово, цинк, хром, марганец и другие металлы, имеющие удельный вес более 5 г на куб. см.
К легким относятся тринадцать металлов. Среди них натрий, калий, бериллий, магний, кальций, стронций, алюминий, титан.
Помимо этого основного деления, цветные металлы нередко подразделяются и на более мелкие семейства. Так, из тяжелых металлов нередко выделяют группу благородных металлов. К ним относятся золото, серебро, платина, осмий, иридий, палладий, рутений и родий. Все эти металлы отличает большая химическая стойкость, они не окисляются, не ржавеют не только на воздухе, но и не растворяются при действии большинства кислот.
В специальное семейство нередко выделяют и рассеянные элементы— те, которые не образуют самостоятельных залежей руд, а рассеяны по всей земной коре. К ним относятся литий, рубидий, иттрий, цезий, германий, радий и многие другие. Эти металлы обычно добывают из руд других элементов, которым они в какой-то мере сопутствуют.