…Уран. Взрывается — физики говорят: расщепляется — его ядро. В разные стороны разлетаются два нейтрона — два снаряда, способных вызвать расщепление еще двух ядер урана, по… нейтроны попадают в ядра примесей — бора и лития и исчезают там, поглощенные этими ядрами. Реакция прекратилась.
— Нам нужен уран, — говорят инженеры, проектирующие атомные электростанции, — в котором примесь бора не превышала бы 0,000001 процента!
— Нам нужен германий, — требуют физики, работающие над созданием полупроводниковых приборов, — в котором примеси меди не достигали бы и 0,0000001 процента. Да и вообще примеси очень нежелательны. Надо, чтобы германия было в нашем германии не меньше 99,99999 процента!
«Семь девяток», — говорят о такой чистоте инженеры.
Сегодня такие сверхчистые металлы производятся уже в промышленных масштабах. И чем больше знакомятся с ними ученые и инженеры, тем больше открывают совершенно удивительных качеств. Оказывается, что многие сверхчистые металлы обладают повышенной пластичностью, коррозионной стойкостью, жаропрочностью, электропроводностью. Сверхчистый алюминий мягок, как свинец. Освобожденный от примесей титан, который считали хрупким, прокатывается в листы и ленты. Оказалось, что даже самые неуловимые примеси в очень значительной мере ухудшают иные очень важные свойства металлов.
И началась борьба за чистый металл. Началась она в лабораториях и кабинетах ученых, затем перешла на опытные полупромышленные установки. А сегодня борьба за чистый металл идет уже в цехах заводов.
Техника сверхчистых металлов поставила целый ряд новых вопросов. Вот только один из них: как определить, какова чистота полученного металла? Химический анализ слишком груб для таких неуловимых количеств. Пытаться определить миллионную долю процента примеси в составе сверхчистого германия методами химического анализа — все равно что стараться выколоть левый глаз комару кухонным косарем. Даже спектральный анализ, поражавший некогда своей фантастической чувствительностью, отказывает, когда речь идет о «седьмой девятке». Пришлось разработать принципиально новые методы.
Делают, например, так. Полученный сверхчистый металл облучают нейтронами. Атомы примесей становятся радиоактивными и сообщают о себе. По величине этой радиоактивности и судят о количестве примесей.
Можно узнать количество примесей и по собственным свойствам германия. Если они удовлетворяют требованиям, значит, очистка произведена достаточно хорошо, значит, выдержано нужное количество «девяток» чистого металла.
И к каким только уловкам не прибегают, чтобы получить чистый металл!
Тщательнейшим образом очищают исходные материалы, ведут плавку в вакууме, стараются, чтобы расплавленный материал не соприкасался со стенками печи, с огнеупорными материалами… И так далее и тому подобное.
Существует и целый ряд специальных технологических процессов, применяемых для очистки металла.
Вот как, например, получают сверхчистые цирконий и титан.
Аппарат для этой цели представляет собой большой металлический бочонок, герметически закрываемый металлической же крышкой. Сквозь эту крышку внутрь бочонка проходят два провода и специальное устройство, с помощью которого можно разбить опускаемую в бочонок ампулу с йодом.
В аппарат загружают технически чистые титан или цирконий и наглухо закрывают крышку. Затем из аппарата откачивают весь воздух, создавая там разрежение в одну стотысячную атмосферного.
После этого ампулу с йодом разбивают. Агрессивнейший элемент — йод — вступает в реакцию с очищаемым металлом, образуя химические вещества, называемые йодидами.
Взрыв сверхновой звезды — это и есть момент рождения элементов.
Аппарат нагревают так, что йодиды начинают испаряться. Одновременно включают ток в провода, ведущие в аппарат. Они внутри аппарата соединены проволочкой из сверхчистого же металла, который предполагается получить. Эта проволочка накаляется электрическим током до температуры 1300–1400 градусов. При такой температуре йодиды разлагаются, чистый металл откладывается на поверхности проволочки, а газообразный йод может снова вступить в реакцию с новой порцией очищаемого металла.
Когда на проволочке осядет требующееся количество сверхчистого металла, аппарат охлаждают. Пары йода осаждаются на его стенках. Только после этого охлаждают и извлекают полученный сверхчистый металл.
Для получения сверхчистого германия применяют метод вытягивания кристаллов из раствора.
Суть метода в том, что обыкновенно примеси имеют свойство охотнее растворяться или в твердом, или в жидком металле. Таким образом, при кристаллизации металла они или выталкиваются из кристаллов и застывающая в последнюю очередь часть металла оказывается наиболее засорена ими, или, наоборот, втягиваются в образующиеся кристаллы и остающийся металл получается более чистым. Однако в обычных условиях сразу же вслед за кристаллизацией за счет диффузии происходит выравнивание процентного количества примесей по всему объему металла.
Используя это свойство для очистки металлов, надо обеспечить, во-первых, непрерывное удаление образующихся кристаллов, во-вторых, непрерывное перемешивание остающегося расплава.
Практически это делается так. В ванну с расплавленным технически чистым германием опускают кристалл германия, укрепленный на специальном стержне, и начинают его медленно извлекать. В результате из расплава медленно вытягивается столбик сверхчистого кремния, нарастающего на затравочный кристалл. Для перемешивания расплава, для непрерывного удаления из района кристаллизации выбрасываемых кристаллами примесей стержень вращают. Весь этот процесс идет в вакууме или в атмосфере нейтрального газа.
Конечно, здесь рассказано только о принципе метода. А в действительности дело значительно сложнее. Перед плавкой кремний, например, моют в воде, прошедшей дважды дистилляционный аппарат. Плавку ведут в атмосфере водорода. Но ведь и в нем могут оказаться примеси. И водород пропускают через активированный уголь. Его очистительная способность растет с понижением температуры. С этой целью уголь охлаждают жидким азотом. И еще тысячи и тысячи предосторожностей принимают, чтобы не попала к металлу хотя бы пылинка. Например, примесь меди к сверхчистому германию, превышающая 0,0000000001 процента, уже дает знать о себе. Эта примесь иногда возникает при добавке к сверхчистому германию улучшающей его качество сверхчистой сурьмы. А ведь и сурьмы к германию добавляют не больше 0,000001 процента!
Встреча с сурьмой для меня всегда останется и встречей с людьми, которые ее добывают на окраине нашей страны, в самом сердце диких киргизских гор. Поэтому да простит мне читатель, что в строгий технический рассказ о сверхчистых металлах я позволю себе включить несколько строк, рассказывающих о человеке, судьба которого, вся жизнь которого неразрывно связана с судьбой советской цветной металлургии, хотя имя его не вошло в энциклопедии и не воспето поэтами…
— Теперь я познакомлю вас с первым комсомольцем нашего комбината, — сказал сопровождающий нас инженер. — Это человек, жизнь которого могла бы стать сюжетом для повести о судьбе пролетариата нашей страны. Ничего ни приукрашивать, ни пропускать не пришлось бы.
Мы только что вернулись из рудника, штольня которого открывается в горе в нескольких десятках метров отсюда. Там добывают руду сурьмы — элемента, которым не так уж богата наша планета. Затем мы познакомились с ее обогащением — сначала дроблением, затем размолом в шаровых мельницах и отделением частиц руды сурьмы от других примесей. В этом цехе мы и встретились с Федором Тимофеевичем Александровым, которого нам представили как первого комсомольца комбината.
Еще несколько минут, и мы сидим в тесной комнатке дежурного инженера фабрики. Перед нами немолодой уже человек с тонким загорелым, как у всех здесь, лицом, но по-молодому живыми глазами. Он рассказывает историю своей удивительной и в то же время обычной для рабочего его поколения жизни.
Чего только не случалось с ним с 1931 года, когда с первой группой рабочих и инженеров пришел он сюда, в эту долину, стиснутую горами со всех сторон, для того, чтобы построить здесь завод и рудник!
— Больше четверти века прожито с тех пор, — говорит Александров, — а я еще и сейчас помню до малейших деталей первую встречу с этой горной долиной. Как и сегодня, гремела река, зеленели склоны гор, голубело небо, но не было ни единого строения на месте этого зеленого поселка.
Он показал рукой в окно, сквозь которое были видны двух-и трехэтажные здания, утонувшие в зелени улицы, и, конечно, неизбежный здесь фон — угрюмые горы.