My-library.info
Все категории

Герман Назаров - Космические твердотопливные двигатели

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Герман Назаров - Космические твердотопливные двигатели. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Космические твердотопливные двигатели
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
82
Читать онлайн
Герман Назаров - Космические твердотопливные двигатели

Герман Назаров - Космические твердотопливные двигатели краткое содержание

Герман Назаров - Космические твердотопливные двигатели - описание и краткое содержание, автор Герман Назаров, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Брошюра посвящена созданию и использованию космических твердотопливных двигателей. Рассматриваются некоторые типы таких двигателей, а также возможные перспективы их использования в космонавтике.Брошюра рассчитана на всех тех, кто интересуется современными проблемами космической техники.

Космические твердотопливные двигатели читать онлайн бесплатно

Космические твердотопливные двигатели - читать книгу онлайн бесплатно, автор Герман Назаров

В практике пилотируемых полетов космического корабля «Меркурий» САС не использовалась. Однако было осуществлено срабатывание этой системы во время первого запуска экспериментального (непилотируемого) космического корабля «Меркурий» (25 апреля 1961 г.), выведенного на орбиту со специальной установкой («роботом») на борту, имитирующей дыхание, температуру, и речь человека. РН была подорвана по команде с Земли через 30 с после старта, но перед подрывом САС отделила корабль, который опустился на парашюте на воду и был подобран вертолетом через 25 мин после запуска. Этот случай на практике доказал целесообразность использования РДТТ в системах аварийного спасения космических кораблей.


Рис. 5. Система аварийного спасения космического корабля «Меркурий»:

1 — РДТТ увода корабля; 2 — РДТТ сброса САС; 3 — ферма; 4 — космический корабль; 5 — РДТТ отделения корабля от РН на орбите; 6 — РДТТ торможения корабля при сходе с орбиты


Рис. 6. Система аварийного спасения космического корабля «Аполлон»:

1 — РДТТ для управления траекторией полета (отвода корабля в сторону); 2 — РДТТ сброса САС; 3 — РДТТ увода корабля; 4 — отсек с экипажем


«Джемини». Аварийное спасение космонавтов при помощи катапультируемых кресел ограничено скоростью и высотой полета в момент катапультирования. В некоторых космических кораблях вместо САС использовались катапультируемые кресла с применением РДТТ. Например, в космическом корабле «Джемини» сигнал на катапультирование обоих космонавтов мог подать любой из них, для чего он должен был вытянуть кольцо из контейнера, установленного между ногами. За креслами космонавтов находились рельсы, которые служили направляющими при катапультировании. Катапультирование осуществлялось с помощью пиропатронов. Причем система блокировки предотвращала срабатывание патронов до того, как с помощью взрывных болтов открывались посадочные люки (их два), через которые выбрасываются кресла с космонавтами.

После срабатывания пиропатронов, когда кресла с космонавтами оказывались вне корабля, включались вмонтированные в кресла РДТТ (продолжительность работы 0,27 с, полный импульс 8,4 кН с), которые отбрасывали кресла вперед под углом 49° к продольной оси корабля. Максимальное ускорение при катапультировании 24 g. Согласно расчетам в случае аварии при старте эти РДТТ должны были обеспечить отбрасывание кресел с космонавтами в сторону от ракеты на 150 м. При проведенных экспериментах кресла отбрасывались на 300 м в сторону и на 140 м вверх.

После отбрасывания кресло отделяется, развертывается надувной баллон, обеспечивающий стабилизацию и торможение кресла, а затем раскрываются парашюты. Посадка экипажа осуществлялась на воду.

«Аполлон». Его САС предназначалась для отбрасывания отсека с экипажем вверх (вперед) и в сторону от РН в случае возникновения аварийной ситуации при старте и на начальном участке полета корабля «Аполлон» (до высоты ~ 80 км). В состав САС входила рама с укрепленными на ней тремя РДТТ (рис. 6). Общая масса этой конструкции 4 т, длина 7 м.

Рама, имеющая форму усеченной четырехгранной пирамиды высотой около 3 м, сварена из труб (титановый сплав) и крепилась к отсеку экипажа подрывными болтами. РДТТ, предназначенный для отбрасывания отсека экипажа вверх (вперед), имел четыре сопла, установленных под углом 35° к продольной оси двигателя. Длина РДТТ 4,6 м, диаметр 0,66 м, масса 2,18 т (без топлива — 0,73 т). Тяга РДТТ 700 кН, продолжительность работы 6 с, создаваемое ускорение 9 g.

В случае возникновения аварийной ситуации одновременно должен был включаться другой РДТТ, предназначенный для отбрасывания отсека с экипажем в сторону. Этот РДТТ длиной 0,6 м, диаметром 0,23 м и массой 23 кг развивал тягу 15,1 кН и работал в течение 0,5 с. После прекращения работы этих двух РДТТ включался двухсопловой РДТТ для сброса САС. При длине 1,5 м и массе 0,25 т он развивал тягу 150 кН и работал менее 1 с.

После отбрасывания САС отсек экипажа спускался на парашютах. Для того чтобы парашюты, размещенные в верхней части отсека с экипажем, могли развернуться, отсек специальным образом ориентировался и спускался днищем вперед. Если аварийная ситуация возникла бы при старте или на начальном участке полета (до высоты 36 км), ориентацию отсека экипажа обеспечивали специальные аэродинамические поверхности, смонтированные на верхней части корпуса САС. До окончания работы РДТТ увода корабля эти поверхности прижаты к корпусу, а затем раскрываются.

САС могла отделяться от отсека с экипажем лишь после того, как будет обеспечена заданная ориентация отсека. Если аварийная ситуация возникла бы на высотах 36–80 км, где плотность атмосферы недостаточна для эффективной работы аэродинамических поверхностей, САС отделялась от отсека экипажа сразу после окончания работы РДТТ увода, а заданная ориентация отсека обеспечивалась с помощью смонтированных в нем ЖРД системы ориентации.

При отсутствии аварийной ситуации при старте и на начальном участке полета по достижении высоты около 80 км рама с двигателями отделяется от отсека с экипажем, для чего должны были включаться РДТТ для сброса САС и отвода корабля в сторону.

РДТТ межпланетных КА. В качестве вспомогательных РДТТ используются на многих ИСЗ, а также на ряде межпланетных КА. Примером могут служить КА «Марс-2» и «Марс-3» (запущены в 1971 г.). На этих КА расположено несколько РДТТ, выполняющих различные задачи (рис. 7). На аэродинамическом тормозном конусе находились две пары РДТТ (тяга каждого 0,5 кН). Одна пара включалась при подлете к Марсу для раскрутки аэродинамического конуса после его отделения вместе со спускаемым аппаратом от КА (время работы 0,3 с). Раскрутка осуществлялась после ориентирования аэродинамического конуса спускаемого аппарата в направлении Марса. Операция раскрутки вызвана необходимостью придания КА заданного ориентированного положения при входе в плотные слои атмосферы Марса.

Затем отстреливался (вместе с соответствующей рамой крепления) маршевый РДТТ перевода аппарата на траекторию спуска и включалась вторая пара РДТТ (время работы 0,26 с), чтобы остановить вращение аэродинамического конуса. Сопла РДТТ этой пары направлены в противоположную сторону по сравнению с соплами РДТТ первой пары.

После аэродинамического торможения аппарата включался РДТТ для сброса крышки парашютной системы и ввода вытяжного парашюта (тяга 6,5 кН). Время работы РДТТ 0,24 с. Одновременно отстреливался аэродинамический тормозной конус и вытяжной парашют вытаскивал основной. Последний вытягивал из парашютного контейнера РДТТ увода парашютной системы, (тяга 9 кН), чтобы парашюты не накрыли спускаемый аппарат, и РДТТ мягкой посадки (тяга 56 кН).


Рис. 7. Спускаемый аппарат межпланетной станции Марс-3»:

1 — аэродинамический тормозной конус; 2 — РДТТ ввода в действие вытяжного парашюта; 3 — РДТТ перевода аппарата на траекторию спуска; 4 — основной парашют; 5 — спускаемый аппарат


Затем срабатывал высотометр, установленный на спускаемом аппарате, и разделялись РДТТ увода и РДТТ мягкой посадки. Первый отбрасывал парашют в сторону (время его работы 1 с), а с помощью второго осуществлялась мягкая посадка спускаемого аппарата на поверхность Марса (время его работы 1,1 с). После окончания работы РДТТ мягкой посадки отстреливался нижний полутор парашютного контейнера и включались два боковых РДТТ (общая тяга 1 кН, время работы 4 е), установленных на корпусе РДТТ мягкой посадки. Их задача — отвести (отбросить) РДТТ мягкой посадки в сторону во избежание ударения его о корпус спускаемого аппарата.

Вспомогательные РДТТ применялись и на КА «Марс-5» и «Марс-6», «Рейнджер» (см. рис. 12 на стр. 51) и т. д.

Вспомогательные РДТТ ракет-носителей. РДТТ нашли применение в качестве газогенераторов на головных обтекателях РН, для управления их полета, для систем ориентации РН (например, в РН «Тор—Эйбл»), в системах разделения ступеней РН (например, в РН «Титан-3Си», «Сатурн», МТКК «Спейс Шаттл») и т. д.

«Сатурн-5». Эта РН с маршевыми ЖРД на всех трех последовательно расположенных ступенях содержит в Общей сложности 18 вспомогательных РДТТ, установленных на периферии корпуса. Причем в хвостовой части первой ступени расположены 8 тормозных РДТТ (развивавших тягу по 337 кН каждый за время работы 0,54 с) для отделения данной ступени. В переходном отсеке под второй ступенью расположены 4 РДТТ (развивавших тягу по 102 кН каждый и работавших в течение 3,8 с) для «осадки» топлива в баках. И наконец, внизу в третьей ступени расположены два РДТТ (развивавших тягу по 15 кН каждый при времени работы 3,9 с) для «осадки» топлива и еще четыре РДТТ (с тягой по 155 кН каждый при времени работы 1,5 с) для отделения второй ступени.


Герман Назаров читать все книги автора по порядку

Герман Назаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Космические твердотопливные двигатели отзывы

Отзывы читателей о книге Космические твердотопливные двигатели, автор: Герман Назаров. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.