Ознакомительная версия.
Заключительный комментарий
В настоящее время исследования, подобные изложенным в этой книге, представляют большой интерес. С середины 1950-х годов постоянно появляются новые концепции. Много замечательных идей, основанных на модели Е — V, пришло к нам из академического сообщества. Среди предложенных концепций есть, например, модель Е — S, где риск измеряется не дисперсией, а полудисперсией. Полудисперсия — это дисперсия некоторого уровня прибыли, который может
быть ожидаемой прибылью, нулевой прибылью или любым другим фиксированным уровнем прибыли. Когда заданный уровень прибьши равен ожидаемой прибыли и распределение прибылей симметрично (без асимметрии), эффективная граница Е — S совпадает с эффективной границей Е — V.
Существуют модели портфелей, использующие вместо дисперсии прибылей другие способы выражения риска, а также более высокие моменты распределения прибылей. Большой интерес в этом отношении представляют методы стохастического доминирования, которые учитывают все распределения прибылей и могут считаться предельным случаем многомерного анализа портфеля, когда число используемых моментов стремится к бесконечности. Подобный подход может быть особенно полезен в том случае, когда дисперсия прибылей бесконечна или не определена.
И снова повторюсь — я не академик — это ни хвастовство, ни извинение, я такой же академик, как чревовещатель или телевизионный проповедник. Академикам необходима модель для объяснения того, как работают рынки, мне же не так важно, как они работают. Многие представители академического сообщества утверждают, что гипотеза об эффективной границе неверна, так как не существует понятия «рациональный инвестор». Сторонники такого подхода утверждают, что люди не ведут себя рационально, поэтому традиционные модели портфелей, такие как теория Е — V (и ее варианты) и модель оценки доходности финансовых активов, являются неудовлетворительными моделями работы рынков. Я согласен, что инвесторы не всегда ведут себя рационально, но это не означает, что нам следует вести себя подобным образом. Нельзя утверждать, что мы не можем получить выгоду из рационального поведения. Когда дисперсия прибылей конечна, мы можем получить преимущество, находясь на эффективной границе.
В последнее время традиционные модели портфелей подвергаются серьезной критике, поскольку считается, что ценовые изменения лучше всего описываются распределением Парето с бесконечной (или неопределенной) дисперсией. Однако многие исследования доказывают, что рынки в последние годы стали ближе к нормальному распределению (т.е. к ограниченной дисперсии и независимости результатов), на чем и основаны критикуемые модели портфелей. В моделях портфелей используется распределение прибылей, а не распределение изменений цен. Несмотря на то что распределение прибылей является трансформированным распределением изменений цены (в результате закрытия проигрышных сделок и максимально долгого удержания выигрышных позиций), эти распределения, как правило, отличаются. Распределение прибылей не обязательно относится к классу распределений Парето, поэтому в главе 4 мы моделировали распределение P&L с помощью регулируемого распределения. Более того, существуют производные инструменты, например, опционы, которые имеют ограниченную полудисперсию или дисперсию. Например вертикальный опционный спред в дебете гарантирует ограниченную дисперсию прибылей. Я не пытаюсь оспаривать разумную критику современных моделей портфелей. Модели следует использовать при условии, что мы осознаем их недостатки. Разумеется, необходимы более совершенные модели портфелей. Я не заявляю, что современные модели адекватны, а говорю лишь о том, что входные данные для моделей портфелей, нынешних или будущих, должны основываться на торговле одной единицей на оптимальном уровне — или на том уровне, который, как мы полагаем, будет оптимальным. Например, если мы применяем теорию Е — V (модель Марковица), входными данными являются ожидаемая прибыль, дисперсия прибылей и корреляции прибылей между рыночными системами. Входные данные должны определяться на основе торговли одной единицей по каждой рыночной системе на уровне оптимального f. Модели портфелей, отличные от Е — V, могут потребовать других входных параметров, но и их для каждой рыночной системы все равно следует рассчитывать на основе торговли одной единицей на уровне оптимального f. Модели портфелей являются лишь одной составляющей управления капиталом, и эта книга не может ответить на все вопросы. Кроме того, постоянно появляются новые, усовершенствованные модели. Скорее всего, мы никогда не получим абсолютно совершенной модели, но это только будет стимулировать дальнейшие поиски.
Это правило применимо к торговле только в одной рыночной системе. Когда вы начинаете торговать более чем в одной рыночной системе, то вступаете в иную среду. Например, можно включить рыночную систему с отрицательным математическим ожиданием для одного из рынков и в действительности получить более высокое математическое ожидание, чем просто математическое ожидание группы до включения системы с отрицательным ожиданием! Более того, возможно, что математическое ожидание для группы с включением рыночной системы с отрицательным математическим ожиданием будет выше, чем математическое ожидание любой отдельной рыночной системы! В настоящее время мы рассматриваем только одну рыночную систему, и для того, чтобы методы управления деньгами работали, необходимо иметь положительное математическое ожидание.
Для процесса зависимых испытаний, как и для процесса независимых испытаний, ставка части вашего общего счета также максимально использует положительное математическое ожидание. Однако при зависимых испытаниях ставки будут меняться; точная доля каждой отдельной ставки будет определяться вероятностями и выигрышами по каждой отдельной ставке.
Многие ошибочно используют среднее арифметическое HPR в уравнении HPR ^ N. Как здесь показано, это не даст истинное TWR после N игр. Вы должны использовать геометрическое, а не арифметическое среднее HPR ^ N. Это даст истинное TWR. Если стандартное отклонение HPR равно 0, тогда арифметическое среднее HPR и геометрическое среднее HPR эквивалентны, и не имеет значения, какое из них вы используете.
Здесь есть еще один плюс, который сразу может быть и не виден. Он состоит в том, что мы заранее знаем проигрыш худшего случая. Учитывая, насколько чувствительно уравнение оптимального f к наибольшему проигрышу, такая стратегия может приблизить нас к пику кривой f и показать, каким может быть наибольший проигрыш. Во-вторых, проблема проигрыша в 3 стандартных отклонениях (или больше) с более высокой вероятностью, чем подразумевает нормальное распределение, будет устранена. Именно гигантские проигрыши более 3 стандартных отклонений разоряют большинство трейдеров. Опционные стратегии могут полностью упразднить такие проигрыши.
Именно в этом случае использование опционов в торговой стратегии столь полезно. Покупка пут или колл-опциона в обратном направлении от позиции по базовому инструменту для ограничения проигрыша либо торговля опционами вместо базового инструмента дадут вам заранее известный максимальный проигрыш, что очень пригодится в управлении деньгами, особенно при оптимальном f. Более того, если вы знаете заранее, каким будет ваш максимальный проигрыш (например, при дневной торговле), тогда вы всегда сможете точно определить величину f в долларах для каждой сделки как следующую дробь: риск в долларах на единицу/оптимальное f. Например, дневной трейдер знает, что его оптимальное f =0,4. Его стоп (stop-loss) сегодня на основе 1 единицы равен 900 долларам. Поэтому оптимально торговать 1 единицей на каждые 2250 долларов ($900 / 0,4) на балансе счета.
Разумный подход требует, чтобы мы использовали наибольший проигрыш, по крайней мере, такой же величины, как и в прошлом. С течением времени мы получаем все большее количество данных и большие периоды проигрышей. Например, если бросить монету 100 раз, она может 12 раз подряд выпасть на обратную сторону. Если бросить ее 1000 раз, то, вероятно, можно получить еще больший период, когда монета выпадет обратной стороной. Тот же принцип работает и в торговле. Мы не только должны ожидать более длинные полосы проигрышных сделок в будущем, следует также ожидать большую проигрышную сделку наихудшего случая.
Уравнения риска разорения, хотя они напрямую и не упомянуты в этой книге, должны также изменяться при использовании приведенных данных. Вообще в качестве вводных данных для уравнений риска разорения используют необработанные данные P&L. Однако когда вы используете приведенные данные, новый поток процентных выигрышей и проигрышей должен умножаться на текущую цену базового инструмента, и далее надо использовать именно этот получившийся поток. Таким образом, при текущей цене инструмента 100 долларов поток процентных выигрышей и проигрышей 0,1; -0,15; 0,2; -0,1 преобразуется в поток 10; -15; 20; -10. Этот новый поток и следует использовать для уравнений риска разорения.
Ознакомительная версия.