Глаза большинства рыб, выпуклые и снабженные круглым, а не уплощенным хрусталиком, воспринимают свет подобно широкоугольному объективу. Рыбы одинаково хорошо видят происходящее не только впереди, но и с боков и даже сзади. Некоторые глубоководные рыбы сами излучают свет с помощью специальных люминесцирующих органов, расположенных вблизи глаза. Такой «прожектор» очень полезен при отыскании пищи. А при опасности рыбы могут прятать его, закрывая специальными складками кожи.
Глаз человека имеет форму почти правильного шара диаметром 24 мм. Снаружи глаз покрыт толстой белой оболочкой — склерой. Ее передняя прозрачная выпуклая часть носит название роговой оболочки, или роговицы. Позади роговицы расположена прозрачная чечевицеобразная линза — хрусталик. Между роговицей и хрусталиком, в передней камере глаза расположена непрозрачная для света радужная оболочка. Присутствие в ней пигмента придает окраску глазу. Пигмент один — меланин, а цвет глаз бывает различный — от бледно-голубого до черного. Цвет зависит как от количества пигмента, так и от места и характера его расположения. У голубоглазых людей (а также у коз, сиамских кошек) зерна темного пигмента расположены на задней стороне радужной оболочки и при отражении создают впечатление голубизны. Зерна меланина, рассеянные на передней стороне оболочки, делают глаза серыми, а по мере возрастания количества пигмента цвет глаз становится карим, а потом и черным.
Окраска радужной оболочки — наследственный признак, передача его потомкам подчиняется особым закономерностям. В центре оболочки имеется круглое отверстие — зрачок. Радужная оболочка играет роль диафрагмы: она может сокращаться и расслабляться, изменяя величину просвета зрачка, т. е. диаметр попадающего внутрь глаза светового пучка. Внутренняя поверхность склеры выстлана сосудистой оболочкой, обеспечивающей питание всех частей глаза. Внутренний слой, выстилающий глаз изнутри, носит название сетчатой оболочки, сетчатки, или ретины. Он-то и воспринимает лучи света, проникающие внутрь глаза. Задняя камера глаза заполнена прозрачным стекловидным телом (рис. 5).
Рис. 5. Глаз человека в разрезе 1 — ресничная мышца; 2 — радужная оболочка; 3 — водянистая влага передней камеры глаза; 4 — зрачок; 5 — роговица; 6 — связка, поддерживающая хрусталик; 7 — конъюнктива; 8 — хрусталик;9 — стекловидное тело; 10 — склера; 11 — сосудистая оболочка; 12 — сетчатая оболочка; 13 — центральная ямка; 14 — слепое пятно; 15 — зрительный нерв
Таким образом, световой луч, попавший в глаз, проходит три прозрачные среды: роговицу, хрусталик и стекловидное тело. Все они преломляют свет, концентрируют его таким образом, что на светочувствительном слое получается четкое, а не расплывчатое изображение предмета, отражающего свет. Но ведь предметы могут находиться на различном расстоянии от глаза. Для ясного их видения необходим механизм изменения преломляющей силы глаза. Эту работу выполняет хрусталик. Посредством мускулов, расположенных вокруг хрусталика, может быть изменена его выпуклость, кривизна. Механизм, с помощью которого преломляющая сила хрусталика автоматически изменяется, обеспечивая четкое видение предметов, носит название аккомодации. Недостатки аккомодации (близорукость и дальнозоркость) можно исправить с помощью очков — стеклянных линз, дополнительно рассеивающих или концентрирующих лучи света.
Глаз полностью воспринимает только небольшой по размерам или далеко расположенный предмет, так как диаметр зрачка невелик, а на ярком свету он уменьшается еще больше. Обычно же глаз очень легко поворачивается в своей орбите, быстро обегая все точки рассматриваемого предмета, как бы «обшаривая» его. Поэтому возникающая на сетчатке картина дает представление о форме предмета, даже если он неподвижен. А вот лягушки и некоторые их собратья из класса амфибий (земноводных) не видят неподвижные предметы. Лягушка скорее погибнет от голода, но не обратит внимания на лежащую рядом пищу, если она неподвижна. А ведь глаз амфибий — это не примитивный «бокал», а довольно совершенный орган. В чем же дело?
Оказывается, мы видим неподвижные предметы только благодаря постоянным, незаметным движениям глазных яблок. Если диапозитив с картинкой прикрепить непосредственно к глазному яблоку (с помощью присоски), то он будет смещаться вместе с глазом, а на сетчатку спроецируется неподвижное изображение. Человек перестанет видеть картинку! Глаз человека, рассматривающего предмет, за считанные секунды совершает миллионы внешне беспорядочных координированных движений. И в результате зрительные ощущения от отдельных участков предмета сливаются в мозгу в цельный образ.
Интересно, что в невесомости движения глазных яблок благодаря отсутствию силы тяжести совершаются гораздо легче, и острота зрения заметно возрастает. Это отмечали американские космонавты. Гордон Купер с высоты нескольких сот километров ясно видел трубы на домах в Тибете и грузовик на дороге в Мексике. Эдвард Уайт во время полета на корабле «Джемини» различал дороги, моторные лодки и даже волны, оставляемые ими. По его словам, Земля с орбиты «Джемини» видна была лучше, чем из кабины самолета, летевшего на высоте 13 км.
Слежение за движущимся предметом — автоматическое, бессознательное свойство глаза, его нельзя удержать усилием воли. Это хорошо знают криминалисты, используя движение глазного яблока (оптокинетическую реакцию) для разоблачения мнимых слепых.
Глаз насекомого в большинстве случаев так же неподвижен, как и глаз лягушки. Однако ощущение движения в нем создается благодаря так называемому фасеточному устройству. Глаз человека представляет собой одну линзу и одну сетчатку. У насекомого глаз состоит из десятка тысяч крохотных линзочек. Под каждой — 6—8 зрительных клеток, расположенных звездочкой. Каждый из глазков воспринимает движущийся предмет отдельно, последовательно и в совокупности создается ощущение движения. Более того, фасеточное устройство повышает способность глаза различать световые мелькания. Если для глаза, человека 20—24 мелькания в секунду уже сливаются в цельную картину (на этом основан принцип кинематографа, где за секунду сменяется 24 кадра), то глаз мухи различает до 300—350 раздельных, не сливающихся кадров в одну секунду!
Для организма важно уметь определять не только форму предмета, но и расстояние до него, его размеры. Получать не плоскостное, а трехмерное представление об окружающих нас предметах мы можем благодаря наличию двух глаз (бинокулярному зрению). Чем ближе к нам находится предмет, тем ближе должны быть сведены оси обоях глаз. Величина угла, образуемого осями глаз, степень конвергенции, точно характеризует расстояние до предмета.
Но так обстоит дело со зрением далеко не во всем мире животных. Только у человека и обезьяны оси обоих глаз при отсутствии конвергенции параллельны. У льва глазные оси образуют угол в 10°, у кошки 14—18°, у собаки — 30—50°, у оленя — более 100°, у жирафы — 140°, у зайца — даже 170°. Чем больше величина этого угла, тем труднее осуществить сведение осей глаз для одновременного рассмотрения предмета двумя глазами. Если глаза направлены в разные стороны так, что их поля зрения не соприкасаются, то, очевидно, трехмерное, стереоскопическое зрение невозможно. Поэтому зайцы лишены способности определять с помощью зрения расстояние до предметов, их глубину. И для собак мир в большой мере видится плоскостным, объем предметов и расстояние до них воспринимаются с трудом. В полной мере способностью к бинокулярному, трехмерному зрению обладают наряду с приматами все кошачьи, а также многие птицы — грифы, орлы, соколы и др.
Очень важное значение имеет также определение размера предмета, его величины. Один и тот же предмет по мере удаления кажется нам все меньше и меньше. Это явление особенно легко наблюдать, глядя на уходящие вдаль телеграфные столбы. Очевидно, при оценке величины предмета мы должны невольно сообразовываться с расстоянием до него. Имеет значение также наш прошлый опыт, наблюдение этого предмета вблизи. Работа по сравнению, анализу зрительных впечатлений, сопоставление с опытом прошлого осуществляется в нашем мозгу подсознательно.
Мозговые центры зрения постепенно вносят свои поправки в детали зрительных восприятий. Изображения предметов, возникающие на сетчатке наших глаз, обратны действительным, перевернуты. Ведь хрусталик, как самая настоящая линза, фокусирует и делает обратными изображения на сетчатке. Мы воспринимаем их в нормальном положении благодаря тому, что с первых месяцев жизни наш мозг, сопоставляя данные о предметах, полученные с помощью зрения и осязания, приводит зрительные образы в соответствие с их прототипами — предметами. Если с помощью специальных призматических очков еще раз перевернуть изображение мира на сетчатке, т. е. по существу вернуть его в нормальное положение,— мозг после некоторого усилия приспосабливается и к этому. Благодаря работе мозга человек, пользуясь одним глазом, может в известных пределах судить о расстоянии до предмета, получать правильное представление о его форме. Мозг, разум в сложной мозаике узоров, возникающих на сетчатке глаза, выбирает (путем анализа и синтеза, использования прошлого опыта) главное и второстепенное, изображение и фон. Глаза нуждаются в разуме, чтобы опознать предметы, локализовать их в пространстве. Но и мозг вряд ли мог бы развиться без глаза, без информации об отдаленных предметах.