My-library.info
Все категории

Виктор де Касто - PRO Антиматерию

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Виктор де Касто - PRO Антиматерию. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
PRO Антиматерию
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
201
Текст:
Ознакомительная версия
Читать онлайн
Виктор де Касто - PRO Антиматерию

Виктор де Касто - PRO Антиматерию краткое содержание

Виктор де Касто - PRO Антиматерию - описание и краткое содержание, автор Виктор де Касто, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Антиматерия – одна из любимых тем писателей-фантастов. Тем не менее она реальна, и ученые уже научились ее получать. Материя и антиматерия появились в результате Большого Взрыва в равных количествах. Но материя осталась, а антиматерии в нашей Вселенной нет или почти нет. Почему так получилось? Что происходило почти четырнадцать миллиардов лет назад? Есть ли другие вселенные, состоящие из антиматерии? Как можно использовать антиматерию на Земле? Автор отвечает на все эти вопросы и рассказывает о большом интересе к антиматерии различных специалистов – как альтернативному источнику энергии, как возможному топливу для межгалактических космических кораблей и как основе самого страшного оружия, которое только может изобрести человечество.

PRO Антиматерию читать онлайн бесплатно

PRO Антиматерию - читать книгу онлайн бесплатно, автор Виктор де Касто
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Законы Ньютона предсказывают, что движение шаров, сделанных из материи, будет идентично движению шаров из антиматерии: миллиарды атомов ведут себя так, как будут вести себя и антиатомы. Однако именно внутри отдельных атомов заключается биполярная природа материи, и именно так правят квантовые законы. Если соединить квантовые законы с теорией относительности Эйнштейна, становится ясно: одной формы материи недостаточно. Акт созидания во время Большого взрыва должен был привести к двум уравновешенным вариантам.

Атомы часто описывают как миниатюрные солнечные системы, а электроны – как планеты, которые кружатся вокруг ядра-солнца: нечто маленькое вращается вокруг чего-то большого в центре. Однако с тех пор, как была предложена эта картина, начались споры.

Земле требуется год для того, чтобы обойти вокруг Солнца, и она вращается так уже свыше четырех миллиардов лет. Сравните это с электроном в атоме водорода, который очевидно обходит находящийся в центре протон примерно за одну сотую скорости света и каждую секунду совершает около триллиона вращений. Можно выразить это и по-другому: за одну миллионную долю секунды электрон оборачивается вокруг находящегося в центре протона большее количество раз, чем Земля совершила оборотов вокруг Солнца за всю историю своего существования.

Эти идеи начали появляться в начале ХХ столетия, и существовала теория, что электрон может эмитировать такое электромагнитное излучение, что оно сразу же будет направлено в ядро в виде вспышки света. Но как тогда атомам выжить? Как они вообще смогли бы существовать?

Ответ дала квантовая теория. Когда речь идет о расстояниях, меньших миллионной доли миллиметра (это масштабы атомов), не следует руководствоваться опытом жизни в реальном мире. Он не может подсказать нам, что происходит.

Макс Планк (1858–1947) – немецкий физик-теоретик, основоположник квантовой физики

В 1900 году Макс Планк показал, что световые волны эмитируются в микроскопических «квантах» энергии, известных как фотоны. В 1905 году Эйнштейн показал, что свет в них остается, путешествуя в пространстве. Это послужило началом квантовой теории, идеи о том, что у частиц могут быть обманчивые и переменные свойства, они не тут и не там, а «наиболее вероятно, здесь, но может, и там». В квантовой механике определенность заменяется вероятностью, она то увеличивается, то уменьшается. Успехом было объяснение того, как выживают атомы.

Квантовые волны можно представить в виде волн, накатывающих на кусок веревки. Представьте веревку, свернутую в лассо, на многослойной петле представьте цифры, как на часах. Если самая большая волна наблюдается в двенадцать, а спадает в шесть часов, то следующий пик получается в двенадцать. Однако если самая большая волна накатывает в двенадцать, а спад наблюдается в пять, то следующий пик будет в десять, и двенадцать уже не соответствует ритму волны. В 1912 году датский физик Нильс Бор понял, что эти волны электронов, циркулирующие в атомах, должны также идеально подходить каждой петле. Электроны не могут отправляться куда хотят, но могут двигаться теми путями, под которые идеально подстраиваются их волны. В частности, они не могут двигаться по спирали, подойти к ядру и разрушить его. Атом стабилен.

Нильс Бор (1885–1962) – датский физик-теоретик, создатель первой квантовой теории атома

Квантовые волны также объяснили тайну, которой было два века от роду: атомные спектры. Относительно просто вытрясти свет из атомов и заставить показать их уникальные спектры. Это можно сделать, добавив какой-то элемент, например, натрий к огню, и смотреть на свет сквозь призму или дифракционную решетку, в результате чего свет разделяется на составляющие его цвета-компоненты. Получится серия ярких линий, в случае натрия будут две особенно яркие желто-оранжевые. Это знакомый нам цвет уличных фонарей. Если мы возьмем пары ртути, то цвет будет голубовато-зеленым, у звезд – розовый, что объясняется способностью водорода эмитировать видимый свет с дальнего конца красной полосы радуги. Эти красивые цвета требовали объяснения. Благодаря чему они получаются? Почему они варьируются у разных элементов? Теперь мы знаем, что они являются результатом квантовых движений электронов внутри атомов.

Свет излучается, только когда электрон переходит с одного пути на другой (с одной петли на другую). Если изначальный путь принимал только электроны с высокой энергией, а электрон переместился на путь, где энергия ниже, разницу между двумя энергиями забирает фотон света, который излучается. Общая энергия остается той же самой, просто она перераспределяется. Таким образом, у фотонов могут быть конкретные количества энергии – определяемые «прыжками», которые может совершить электрон. Наши глаза видят разные ценности энергий фотонов как разные цвета. В результате излучаемый свет дает спектр цветов, который является уникальным для каждого атомного элемента. Именно благодаря этим цветовым «автографам» можно сказать, какой атомный элемент присутствует в космосе, когда космос направляет на нас свои лучи. Эти цветовые модели являются видимым доказательством того, что квантовые волны упорядоченной случайности правят в субатомном мире фундаментальных частиц.

Электрон

Название «электрон» происходит от греческого слова, означающего «янтарь». В Древней Греции естествоиспытатели проводили эксперименты с кусками янтаря – их терли шерстью, после чего те начинали притягивать к себе мелкие предметы. Первым слово «электрон» использовал Джордж Стони, в дальнейшем его стал использовать и Джозеф Джон Томсон, о котором мы расскажем ниже. Это стабильная отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Заряд электрона неделим, впервые он был измерен русским физиком А. Ф. Иоффе в 1911 году и американским физиком Робертом Милликеном в 1912 году. Эта величина служит единицей измерения электрического заряда других элементарных частиц, хотя, в отличие от заряда электрона, элементарный заряд обычно берется с положительным знаком.

Датой открытия электрона считается 1897 год – в этом году Джозеф Джон Томсон поставил эксперимент по изучению катодных лучей. Томсон долгие годы возглавлял Кавендишскую лабораторию в Кембридже, к этому периоду относятся все исследования Томсона по прохождению электричества через газы, за которые он получил Нобелевскую премию по физике в 1906 году.

Вопрос природы катодных лучей занимал Томсона на протяжении многих лет, он всегда склонялся к тому, что эти лучи состоят из отрицательно заряженных частиц, исходящих из катода, в отличие от ряда немецких физиков, которые считали, что это волны, проходящие в эфире. На мнение Томсона влиял, в основном, тот факт, что лучи отклонялись в магнитном поле в поперечном их движению направлении.

Джозеф Джон Томсон (1856–1940) – английский физик, один из основоположников классической электронной теории металлов

Вначале ученый считал, что заряженные частицы были молекулами или атомами. Но измеряя магнитное отклонение количественно, он начал сомневаться в правильности этой точки зрения, поскольку отклонение было существенно больше, чем предсказывала гипотеза. Совмещая данные по электростатическому и магнитному отклонению, он смог получить скорость частиц в лучах и отношение их заряда к массе. Это значение оказалось отличным от найденного для атомов водорода при электролизе. Предполагая, что заряд был одним и тем же в обоих случаях, из экспериментальных данных следовало, что масса частиц катодных лучей была очень мала по сравнению с массой атома водорода. Томсон приблизительно подтвердил это значение отношения массы к заряду калориметрическим измерением энергии, переносимой лучами одновременно с передаваемым ими зарядом.

К этому времени еще не ставилось ни одного эксперимента, в котором можно было бы одновременно определить и заряд, и отношение массы к заряду частицы катодного луча. Томсон увидел возможность одновременного определения этих величин для частиц, уносящих отрицательный заряд при попадании ультрафиолетового излучения на цинк. Он разработал метод определения отношения массы к заряду для них и заряда одной частицы методом капельной конденсации. Целью эксперимента было однозначно показать: эти частицы имеют массу порядка одной тысячной от массы водорода и заряд, равный заряду атома водорода в электролизе. В первых публикациях на эту тему Томсон еще не использовал слово «электрон», он называл эти частицы «корпускулами».

Питер Зееман (1865–1943) – голландский физик. Исследователь воздействия магнитного поля на спектральные линии источника излучения. Открыл эффект, известный теперь под названием «эффекта Зеемана»

Ознакомительная версия.


Виктор де Касто читать все книги автора по порядку

Виктор де Касто - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


PRO Антиматерию отзывы

Отзывы читателей о книге PRO Антиматерию, автор: Виктор де Касто. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.