My-library.info
Все категории

Алекс Беллос - Красота в квадрате

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Алекс Беллос - Красота в квадрате. Жанр: Прочее издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Красота в квадрате
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
286
Читать онлайн
Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате краткое содержание

Алекс Беллос - Красота в квадрате - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Красота в квадрате читать онлайн бесплатно

Красота в квадрате - читать книгу онлайн бесплатно, автор Алекс Беллос

По возвращении Фурье из Египта Наполеон назначил его префектом расположенного в Альпах департамента Изер со столицей Гренобль. Фурье всегда отличался слабым здоровьем и очень сильной чувствительностью к холоду, поэтому никогда не выходил из дома без пальто даже летом и часто приказывал прислуге носить за ним еще одно пальто про запас. Фурье постоянно поддерживал в комнатах очень высокую температуру. В Гренобле его научные исследования тоже были связаны с теплом. В 1807 году он опубликовал труд под названием On the Propagation of Heat in Solid Bodies («О распространении тепла в твердых телах»), в котором рассказал об одном удивительном открытии, касающемся синусоид.

Знаменитая теорема Фурье гласит: любую периодическую волну можно построить посредством сложения синусоид. На это несколько неожиданное утверждение современники ученого отреагировали с большим недоверием. Многие волны совершенно не похожи на синусоиды — например, прямо­угольная волна (см. рисунок ниже), которая напоминает зубцы ограды замка и состоит из прямых линий, тогда как синусоида представляет собой непрерывную кривую. И все же Фурье оказался прав: прямоугольную волну можно построить из одних только синусоид.

Вот как это сделать. На рисунке ниже размещены три синусоиды: элементарная синусоида, волна поменьше с частотой в три раза больше и третью амплитуды и еще более мелкая волна с частотой в пять раз больше и амплитудой в пять раз меньше. Эти три волны можно описать следующими уравнениями: sin x, и .

Я начал суммировать волны, представленные на рисунке. Сначала элементарную синусоиду, sin x. Сумма sin x + являет собой волну, которая похожа на ряд коренных зубов. Сумма sin x + +  — это волна, напоминающая нить лампы накаливания. Прибавляя к данной последовательности следующие члены ряда, мы будем все больше приближаться к прямоугольной волне:

В пределе, прибавив бесконечное множество членов ряда, мы получим прямоугольную кривую. Просто поразительно, что кривую столь строгой формы можно построить с использованием исключительно волнообразных колебаний. Любую периодическую волну, состоящую из зубчатых линий, сглаженных кривых или даже их сочетания, можно создать с помощью синусоид.

Сумма синусоид, образующих эту волну, называется рядом Фурье [14]. Это чрезвычайно полезная концепция, поскольку она позволяет интерпретировать непрерывную волну в категориях дискретных сигналов. Например, члены ряда для прямоугольной волны могут быть представлены в виде гистограммы, как показано на рисунке ниже.

На горизонтальной оси отложены частоты составляющих синусоид, а на вертикальной — их амплитуды. Каждый столбик представляет синусоиду, причем самый левый — это синусоида, имеющая основную («фундаментальную») частоту. График такого типа обозначается термином «частотный спектр волны», или «преобразование Фурье».

Теорема Фурье стала одним из самых важных математических открытий, сделанных в XIX веке, поскольку позволила моделировать явления из многих областей (от оптики до квантовой механики и от сейсмологии до электротехники) в виде периодических волн. В большинстве случаев лучший способ изучения подобных волн сводится к их разбиению на простые синусоиды. В частности, такая область естествознания, как акустика, целиком и полностью построена на практическом применении открытий Фурье.

Звук — это вибрация молекул воздуха. Они вибрируют в направлении распространения звука, как показано на рисунке ниже на примере кларнета, поочередно образующего области сжатия и разрежения. Изменение давления воздуха в любой точке с течением времени представляет собой периодическую волну.

Как видите, звуковая волна, создаваемая кларнетом, имеет сложную зубчатую форму. Однако, согласно теореме Фурье, ее можно разложить на сумму синусоид, частота которых кратна основной частоте первого члена ряда. Другими словами, волну можно представить в виде спектра частот с разной амплитудой. На рисунке частотный спектр кларнета отображен в виде гистограммы.

Звуковая волна и частотный спектр кларнета

Помните: зубчатая волна и гистограмма представляют один и тот же звук, просто эта информация закодирована разными способами. На графике волны на горизонтальной оси отложено время, тогда как на гистограмме — частота. Инженеры-звукотехники говорят, что звуковая волна находится во временной области, а результат ее преобразования — в частотной.

Частотная область предоставляет нам всю информацию, которая необходима для воссоздания звука кларнета с помощью камертона. Каждый столбик гистограммы обозначает синусоиду, колеблющуюся с определенной частотой. Вспомните об экспериментах Лиссажу с камертонами, о которых шла речь выше. Создаваемая камертоном звуковая волна — это синусоида. Следовательно, для воспроизведения звука кларнета нужно сделать так, чтобы специально подобранные камертоны издавали звук, частота и амплитуда которого описываются соответствующим элементом гистограммы. Точно так же частотный спектр скрипки представляет собой подробную инструкцию по использованию камертонов для воссоздания звука скрипки. Различие между тембром ноты «до» третьей октавы кларнета и скрипки обеспечивается колебанием одной группы камертонов с разными относительными амплитудами. Таким образом, исходя из теоремы Фурье, теоретически возможно сыграть все сочинения Бетховена с помощью камертонов так, что их звучание будет неотличимо от исполнения тех же произведений симфоническим оркестром.

Когда мимо Dolby Laboratories в Сан-Франциско проезжает пожарная машина, все сотрудники компании (особенно «золотые уши», то есть те, кто обладает исключительным слухом) закрывают руками уши, пытаясь защитить свой слух от вредного шума. Компания Dolby завоевала хорошую репутацию благодаря выпуску систем шумопонижения для киноиндустрии, а сейчас разрабатывет программы для обеспечения высокого качества звучания бытовых электронных устройств, целиком и полностью основанные на синусоидах.

Возможность перевести звуковую волну из временной в частотную область дает следующее преимущество: многие задачи, которые трудно выполнить в одной области, гораздо проще решить в другой. Любой звук, воспроизводимый цифровыми устройствами (телевизором, телефоном или компьютером), хранится в виде данных в частотной, а не временной области. «Звуковая волна похожа на макаронину, — сказал мне старший директор отдела по разработке звуковых технологий Бретт Крокетт. — Ее невозможно ухватить». Данные о частотах гораздо легче сохранить, поскольку они представляют собой совокупность дискретных значений. Помогает также и то, что наш слух воспринимает не все частоты. «[Слух] не нуждается в полной картине», — добавил Крокетт. Программное обеспечение Dolby превращает звуковые волны в синусоиды, а затем отбрасывает несущественные синусоиды, чтобы записать максимально качественный звук и сохранить его в виде как можно меньшего количества информации. Когда она воспроизводится в виде звука, диапазон оставшихся частот конвертируется в звуковую волну во временной области.

Хоть все это звучит достаточно просто, на практике фильтрация синусоид из частотного спектра — чрезвычайно сложная задача. Во-первых, в основе этого процесса лежит так называемое быстрое преобразование Фурье — компьютерный алгоритм, конвертирующий волны в их частоты в режиме реального времени. Во-вторых, разные инструменты, музыкальные стили и голоса требуют разных решений. Труднее всего правильно воспроизвести звукоряд, содержащий гармоники, поскольку его частотный спектр напоминает частокол: амплитуды разных частот имеют одинаковую высоту, что приводит к удалению даже тех частот, которые можно услышать. В компании Dolby используют самые современные технологии, для того чтобы точно воспроизвести невероятно прекрасную песню Moon River («Лунная река»), написанную Генри Манчини в 1961 году. «Золотые уши» Бретта Крокетта оценивают новую технологию Dolby по тому, насколько правдиво она воссоздает гармонический рифф, записанный более чем полстолетия назад.

Жозеф Фурье был первым человеком, преобразовавшим периодическую волну в диапазон частот. Гораздо позже биологи выяснили, как именно работает ухо. Отдел внутреннего уха, отвечающий за восприятие и распознавание звуков, называется улиткой и представляет собой свернутый спиралью, заполненный жидкостью канал, мембрана которого покрыта волосковыми клетками. Волоски вибрируют в соответствии с частотой входящей звуковой волны, причем волоски, вибрирующие на самых низких частотах, находятся у одного конца улитки, а на самых высоких частотах — у другого конца. Если развернуть спираль улитки в прямую линию, она выглядела бы как горизонтальная ось результата преобразования Фурье. Природа выделяет частоты звуковых волн с тех самых пор, как у живых существ появились уши, чтобы слышать.


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Красота в квадрате отзывы

Отзывы читателей о книге Красота в квадрате, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.