My-library.info
Все категории

Алекс Беллос - Красота в квадрате

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Алекс Беллос - Красота в квадрате. Жанр: Прочее издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Красота в квадрате
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
283
Читать онлайн
Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате краткое содержание

Алекс Беллос - Красота в квадрате - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Красота в квадрате читать онлайн бесплатно

Красота в квадрате - читать книгу онлайн бесплатно, автор Алекс Беллос

Теорема. Все числа интересны [4].

Доказательство. Предположим, это утверждение ошибочно, а значит, есть очень скучные числа. Если бы это действительно было так, существовало бы самое малое скучное число. Однако сам факт наличия такого числа делает его интересным. Другими словами, термин «самое малое скучное число» противоречит сам себе. В этом и состоит несоответствие. Это утверждение не может быть ложным, стало быть, оно должно быть истинным.

Древнегреческий мыслитель Аристотель одним из первых изучил сущность доказательства. Он разработал систему логических рассуждений, призванную определить, приводят ли истинные предпосылки к истинным выводам. Аристотель занимался философией, но все же идея о том, что истина переходит от предпосылок к выводам посредством логической дедукции, оказала значительное влияние на математику. В действительности, начиная со времен Древней Греции, математика изучает именно то, как истинные предпосылки приводят к истинным выводам через доказательства.

В III столетии до нашей эры Евклид написал «Начала», основополагающий трактат по геометрии, отличающийся характерным литературным стилем и построенный в соответствии с принципиально новой концептуальной схемой. Евклид начал с небольшого набора предполагаемых истин, или аксиом, и вывел из них все остальные истины, или теоремы. Его способ систематизации знаний обозначается термином «аксиоматический метод».

Для начинающих геометров трактат «Начала» был своего рода кулинарной книгой. В нем указан список ингредиентов: определения 26 терминов и 10 предположений, которые разрешается считать истинными, — например, о том, что между двумя точками можно провести прямую линию. Затем Евклид рассказывает о блюдах, которые намерен приготовить (теоремы), и приводит пошаговые инструкции относительно того, как это сделать (доказательства). Первая теорема касается построения «равностороннего треугольника на заданной конечной прямой», вторая — «как от данной точки провести прямую, равную данной прямой». В каждом доказательстве Евклид использует только перечисленные в начале книги предположения, и каждый очередной шаг логически вытекает из предыдущего. Метод, сводящийся к формулировке исходных предположений, после которой следует постепенное построение знаний посредством теорем и доказательств, стал стандартной схемой для всех последующих математических трудов.

В одной из самых известных теорем, изложенных в трактате «Начала», используется доказательство от противного.

Теорема. Существует бесконечно много простых чисел.

Доказательство. Во-первых, обратите внимание на следующее. Доказательство нельзя читать так же бегло, как прозу. Вполне нормально, если понадобится его перечитать несколько раз, прежде чем оно станет понятным. Во-вторых, давайте разберемся, что именно пытается сделать Евклид. Простые числа (2, 3, 5, 7, 11, 13 …) — это числа, которые больше единицы и делятся только на себя и 1. Евклид покажет нам, что, если эта теорема ошибочна, мы получим противоречие. Точнее говоря, он докажет, что при существовании конечного количества простых чисел можно создать еще одно простое число, что противоречит утверждению о том, что количество таких чисел конечно. Эта теорема не может быть ошибочной, значит, она должна быть верной.

Шаг 1. Пусть a, b, c… k — фиксированное множество простых чисел.

Шаг 2. Умножим все числа этого множества, чтобы получить число a × b × c ×… × k. Назовем это число М.

Шаг 3. Увеличим его на единицу, чтобы получить М + 1.

Шаг 4. Является ли М + 1 простым числом?

(1) Если М + 1 — простое число, то мы добились своей цели найти простое число, не входящее в исходное множество.

(2) Если М + 1 — не простое число, то должно существовать простое число p, на которое оно делится. В таком случае p — это либо одно из простых чисел исходного множества, либо нет. Если нет, у нас есть новое простое число. Если да, нам известно, что М делится на p, поскольку М делится на все числа исходного множества. Но теперь у нас возникла ситуация, когда на p делится и число М, и число М + 1, что невозможно, поскольку эти два числа разделяет только одно число — 1, которое не является простым.

Отсюда следует вывод: либо М + 1 — это новое простое число, либо М + 1 делится на новое простое число. В любом случае задача Евклида выполнена. Он доказал, что конечное множество не покрывает всю совокупность простых чисел.

В доказательстве Евклида применен принцип, который обозначается термином reductio ad absurdum — «приведение к абсурду», когда абсурдный вывод демонстрирует ошибочность предпосылки. На шаге 4 (2) абсурдный вывод состоит в том, что на p должно делиться как число М, так и число М + 1, а ошибочная предпосылка в том, что число p принадлежит конечному множеству простых чисел. В книге A Mathematician’s Apology23 преподаватель Оксфордского университета Годфри Гарольд Харди писал, что доказательство Евклида «остается таким же актуальным и значимым, как и тогда, когда оно было открыто — две тысячи лет не оставили на нем никаких следов». Это короткое и точное доказательство, не требующее никаких дополнительных концепций, кроме сложения, умножения и деления. «Приведение к абсурду, которое так любил Евклид, — один из лучших инструментов математика, — добавил Харди. — Это гораздо более эффективный прием, чем любой шахматный гамбит. Шахматист может пожертвовать пешкой или даже более значимой фигурой, а математик ставит на кон игру».

Приведение к абсурду — это также один из любимых приемов комедиантов. Ирония используется для того, чтобы добиваться все более и более абсурдных выводов, тем самым все сильнее подчеркивая нелепость исходного предположения, — этот прием известен как сатира.

На самом деле я считаю, что сформулированное Евклидом доказательство бесконечности множества простых чисел комично само по себе. Для того чтобы найти новое простое число, Евклид должен сначала создать число М, которое не только до нелепости большое, но и представляет собой точную противоположность того, что он ищет, поскольку число М делится на каждое известное простое число. Затем, прибавив наименьшее число 1, Евклид переворачивает ситуацию с ног на голову. Мельчайший дополнительный элемент расшатывает почву под ногами огромного, мегаделимого монстра М и составляющих его простых чисел, беспощадно раскрывая их ограниченность. Подобно саркастической фразе, прозвучавшей в фильме Wayne’s World («Мир Уэйна»), Евклид говорит: «Эта группа простых чисел включает в себя все числа… нет!»

В математике много шутников.

Как только мы, люди, обретаем способность держать ручку в руках, мы начинаем машинально рисовать что-то на бумаге. Самый распространенный способ — в случайном порядке начертить на листе бумаги продольные и поперечные линии и заштриховывать образовавшиеся сегменты. Этот способ особенно хорош тем, что позволяет разместить рисунок так, чтобы заштрихованные сегменты имели общие стороны только с незаштрихованными, и наоборот. Подобный тип рисунка называется двухцветным, поскольку содержит всего два цвета. Чтобы доказать, почему мы можем выполнить такой рисунок в двух цветах, необходимо ввести еще один распространенный математический инструмент — доказательство методом индукции.

В философии и эмпирической науке индукция — это принцип, который гласит, что если событие наблюдалось много раз в прошлом, то можно предположить, что оно снова произойдет в будущем. Например, Солнце восходит каждое утро с незапамятных времен. Следовательно, было бы логично предположить, что оно взойдет и завтра. Мы не можем доказать, что Солнце завтра взойдет, но можем быть уверены в этом. Однако в математике мы не можем делать какие-то предположения исключительно на основании прошлого опыта.

Рассмотрим пять кругов, представленных на рисунке ниже. В первом случае на линии окружности есть только одна точка, во втором две, в третьем три, в четвертом четыре и в пятом пять. Давайте соединим точки прямыми линиями и посчитаем, сколько секторов получилось в каждом круге. Эти круги разделены на 1, 2, 4, 8 и 16 секторов. Закономерность поразительна: это ведь последовательность, в которой каждое число в два раза больше предыдущего! Можно ли сделать предположение, что если соединить шесть точек на окружности, то количество секторов составит 32?

Подсчитайте количество секторов в каждом круге и попробуйте догадаться, что будет дальше

Категорическое НЕТ! В случае шести точек будет 31 сектор, а по мере дальнейшего увеличения количества точек на линии окружности — 57, 99, 163, 256, 386... Закономерность здесь есть, но это не последовательность, в которой каждое число в два раза больше предыдущего [5]. Ни в коем случае не следует делать выводы на основании ограниченного количества наблюдений, какими бы многообещающими эти выводы ни казались.


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Красота в квадрате отзывы

Отзывы читателей о книге Красота в квадрате, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.