My-library.info
Все категории

Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова. Жанр: Газеты и журналы / Сделай сам / Хобби и ремесла год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Интернет-журнал "Домашняя лаборатория", 2007 №1
Автор
Дата добавления:
7 октябрь 2022
Количество просмотров:
78
Читать онлайн
Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова

Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова краткое содержание

Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова - описание и краткое содержание, автор Цыбанова, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Большой и увлекательный, научно-прикладной и образовательный, но некоммерческий интернет-журнал, созданный группой энтузиастов. Интернет-журнал содержит материалы, найденные в Интернет или написанные для Интернет. Основная тематика статей — то, что можно сделать самому, от садовых поделок до сверхпроводников, но есть и просто полезные материалы.

Интернет-журнал "Домашняя лаборатория", 2007 №1 читать онлайн бесплатно

Интернет-журнал "Домашняя лаборатория", 2007 №1 - читать книгу онлайн бесплатно, автор Цыбанова
гелия при давлении 5-20 мм рт. ст… Имея самый высокий из всех газов потенциал ионизации (21 эВ), он позволяет возбуждать находящийся в нём в виде малой примеси водород (13 эв) без сильного высвечивания линий самого гелия. К тому же, спектр гелия достаточно беден и его линии легко могут быть подавлены или отделены от водородных другими способами. Аргон также можно применять, но его спектр богаче, и такая замена не имеет смысла.

Далее, водород в трубку следует вводить в очень малых количествах, чтобы его примесь была полностью атомизирована и не возникал непрерывный спектр молекул типа Н2, Н3, ННе и тому подобных.

Итак, в трубке должна быть вода. И водород. Последний легко получается в разряде из воды, так что его специальное введение оказывается излишним.

Поскольку малые примеси молекулярного газа очень быстро поглощаются в условиях разряда, то в трубке необходимо иметь некоторый запас воды, которого должно хватать на всё время работы, то есть до того времени, пока трубку разобьют у пользователя (именно этим, как показала практика, и определяется срок службы). Запас воды в трубке удобно хранить в сорбированном виде. Но тогда давление её паров зависит от температуры и появляется возможность его регулировать в процессе работы.

Окончательно мы пришли к такой конструкции (рис. 36).

Гейслерова трубка из молибденового стекла с железным катодом из материала консервной банки, отожжённом в водороде и окисленным прогревом в пламени с последующим охлаждением на воздухе. Она снабжается анодом в виде железного цилиндрика, в котором проволочным кольцом укреплена таблетка из цеолита. Род цеолита не играет особой роли, но он не должен быть загрязнён органикой. Наверняка вместо него можно применять алюмогель или силикагель, но мы работали только с цеолитом, что было вызвано исключительно его наличием, возможностью изготавливать из него аккуратные таблетки с помощью напильника или наждачной бумаги и термостойкостью, позволяющей очищать его кратковременным нагревом анода до слабого свечения. Объём таблетки в 20 мм3 вполне достаточный.

Катод делался из свёрнутого листа с зазорами около полутора миллиметров, что создавало на отдельных его участках эффект полого катода и уменьшало распыление. Наверняка катод можно делать и из нержавейки, пермаллоя или никеля.

Рядом с катодом помещался геттер. Делался он следующим образом: Стружка из магния отжигалась в стеклянной трубке при температуре около 400 градусов. После этого она плотно наматывалась на проволоку из молибдена, являющуюся вводом, и поверх неё наматывался нихром диаметром в 0,3 мм для защиты магния от огня при заварке и крепления его к вводу. Остеклованные вводы заваривались в трубку. Она споласкивалась изнутри дистиллированной водой, которая затем сливалась через штенгель и её остатки испарялись в вакууме масляного насоса с газобалластом. Трубка включалась в обратной полярности и производился нагрев анода током разряда для удаления сорбированной воды из цеолита. Нагрев продолжался до тех пор, пока анод не начинал слабо светится и катодное тёмное пространство вокруг него не достигало размера порядка десяти миллиметров.

Затем в трубку напускался гелий до нескольких мм рт. столба и производился прогрев разрядом всех электродов. Катод грелся докрасна, а геттер — до первых признаков распыления. В процессе этой очистки газ несколько раз сменялся. Прогрев стекла трубки производился горелкой до жёлтого свечения.

Охлаждённая трубка заправлялась каплей воды. Если надо было получить одновременно линии обычного водорода и дейтерия, то использовалась смесь обычного дистиллята с тяжёлой водой в соотношении один к одному (пользоваться для получения трёх линий смесью обычной, тяжёлой и сверхтяжёлой водой следует с крайней осторожностью, так как тритий радиоактивен).

Окончательно заправленная водой трубка быстро откачивалась до давления паров воды (около 20 мм рт. столба), после чего гибкая хлорвиниловая трубка, через которую производилась откачка, пережималась на несколько минут (предполагалось, что за это время цеолит сорбирует достаточное количество воды).

После этой операции трубка откачивалась до обычного предельного давления насоса (около 5∙10-2 мм рт. столба). Затем она наполнялась гелием до 10–12 мм рт. ст. и на катод-анод подавался рабочий ток в прямой полярности. Сила тока выбиралась равной рабочей — 20 ма. Если трубка после прогрева в течении нескольких минут давала хорошее малиновое свечение и чистый спектр, то она отпаивалась от поста, если нет, то газ несколько раз откачивался и сменялся при горящем разряде, для удаления избытка воды.

Готовая трубка с хорошим спектром отпаивалась от поста. Затем на геттер подавался минус и производилось осторожное распыление магния до тех пор, пока из разряда не исчезала вода. Включив затем трубку в штатном режиме при токе около десяти миллиампер, можно было наблюдать, как от разогретого разрядом анода по капилляру распространяется малиновое свечение водорода. Ток разряда затем подбирался таким, чтобы линии гелия почти исчезали, а молекулярный фон ещё не был слишком сильным. Обычно этот ток лежал в пределах от десяти до тридцати мА. Если воды выделялось слишком много, то она аккуратно «выжигалась» геттером. Следует заметить, что в такой трубке стабилизация режима происходит достаточно медленно, и для его установления необходимо выждать 10–15 минут.

Несколько трубок не удалось изготовить без непрерывного спектра. Линии водорода были также слабы. Есть подозрение, что в трубку каким-либо образом попал углерод, либо сера, но проверить это предположение не удалось.

В удачных трубках свечение атомарного водорода можно наблюдать даже в баллончиках, где находятся железные электроды. Это может служить указанием на то, что их поверхность также «отравлена» водой. Наличие на поверхности катода окисленной магниевой плёнки приводит к концентрации разряда в виде пятен. Это не вредное явление, и, может быть, что такая плёнка даже замедляет распыление катода.

Для предотвращения реакции железа с водой и выделения избыточного водорода все железные детали следует окислить, для чего накалить горелкой до яркого свечения и остудить на воздухе. Плёнка окиси железа может служить поддержанию баланса между количеством воды и свободного водорода, окисляя избыток последнего.

Применение вместо магниевого геттера титана нами систематически не исследовано, однако, учитывая тот факт, что одна из наших трубок с магниевым геттером проработала от Нового года до Первого мая (4 месяца непрерывной работы!) этот вопрос не представляется практически важным.

В одну из трубок нами, с целью эксперимента, была ведена ртуть. Каких либо отрицательных последствий это не дало, но большая плотность тока в капилляре привела к перекачке ртути к катоду, где она и светилась. Получить стабильный спектр со ртутью не удалось.

Нами была предпринята попытка сделать трубку (собственно говоря, уже лампу) с разрядным капилляром из кварца диаметром 4


Цыбанова читать все книги автора по порядку

Цыбанова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Интернет-журнал "Домашняя лаборатория", 2007 №1 отзывы

Отзывы читателей о книге Интернет-журнал "Домашняя лаборатория", 2007 №1, автор: Цыбанова. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.