Будущий лауреат родился 10 октября 1936 года в пригороде Штутгарта. Здесь он закончил гимназию, вспоминая которую говорит, что порою ему там было невероятно скучно. И преподаватели попадались далеко не все такие уж замечательные. Из всех школьных предметов Герхард больше всего ненавидел… физкультуру. И когда другие мальчишки отправлялись гонять мяч, он предпочитал посидеть с книгой в руках. Причем довольно часто в его руках можно было увидеть разного рода труды по химии и физике.
В 13 лет он начал проводить химические опыты у себя дома. Мама будущего лауреата полгода стойко терпела чудовищные запахи и взрывы, но потом попросила все это безобразие прекратить. Тогда Эртль бросил химию и, переключившись на физику, стал собирать радиоприемники.
В 1955 году он поступил учиться на физический факультет Штутгартского университета, который и закончил пять лет спустя. В это же время он успел постажироваться в Сорбонне (Париж) и Мюнхенском университете. Затем он перешел вслед за своим руководителем в технический университет Мюнхена, где и защитил докторскую диссертацию.
В 1968 году Г. Эртль возглавил факультет физической и электрической химии Ганноверского университета. В 1973 году он вернулся в Мюнхен и несколько лет руководил факультетом физической химии университета Людвига Максимильяна. Именно в это время он и провел первые исследования из той обширной серии работ, которая, в конце концов, привела его к Нобелевской премии.
В 2004 году Герхард Эртль официально вышел на пенсию. Но в Институте за ним сохранился кабинет, где ученый и ныне работает практически каждый день, консультируя молодых коллег и занимаясь своими собственными делами.
У него уже множество наград и почетных званий, а также жена, двое детей, четверо внуков и две кошки.
Хитрости катализа
Профессора Эртля знают во всем мире как одного из отцов катализа. Он не только придумал, как ускорить многие реакции, но и объяснил суть механизма катализации. До него было во многом непонятно, как вещество, которое само в реакции не участвует, может ее ускорить.
Один из опытов, иллюстрирующий суть катализа, выглядит так. Если в открытую колбу, содержащую концентрированный водный раствор аммиака, поместить предварительно подогретую платиновую проволоку, то невооруженным глазом видно, как она нагревается до красного каления и остается в таком состоянии длительное время.
Откуда берется дополнительная энергия для нагрева?
Оказывается, в присутствии платины аммиак взаимодействует с кислородом воздуха. Эта реакция является экзотермической, то есть идет с выделением большого количества тепла. А тепло, как известно, обычно ускоряет течение реакции.
Катализаторы могут быть как твердыми, так жидкими и газообразными. А в некоторых случаях имеет место и аутокатализ, когда процесс ускоряется одним из продуктов реакции. Наблюдать самопроизвольный катализ можно, например, смешав растворы перманганата калия (обычной марганцовки) и сульфата калия. Первоначальная малиново-красная окраска смеси вскоре начинает меняться, причем все быстрее. А причиной тому образующиеся в результате реакции ионы Мn2+. Многие реакции в растворах ускоряются ионами гидроксония Н30+ (в кислой среде) и ионами ОН— (в щелочной).
Еще существуют гомогенный и гетерогенный катализ, катализационный крекинг… В общем, не случайно на эту тему написаны толстенные тома, а без катализаторов немыслимы многие процессы современного производства. Здесь и борьба с выхлопными газами автомобилей, и нефтепераработка, и производство полупроводников. Даже парниковый эффект и разрушение озонового слоя во многом связаны с каталитическими процессами, протекающими на границе твердых и газовых фаз.
Начало многим из вышеперечисленных исследований и положил профессор Эртль. По словам сотрудника Института катализа СО РАН, доктора химических наук Владимира Городецкого, который несколько лет работал совместно с Эртлем, именно работы немецкого ученого и позволили разобраться, как именно протекает катализ.
Как добыть азот из воздуха?
К реакциям, оказавшимся в поле зрения исследователя, относится, в частности, и синтез аммиака на поверхности железа, а также окисление окиси углерода на палладии. Первый из упомянутых процессов применяется в производстве искусственных удобрений.
Как известно, растения не умеют усваивать азот непосредственно из воздуха. Исключение составляют лишь бобовые, в которых проживают бактерии, умеющие «переваривать» азот и передавать его своим хозяевам уже в связанном виде. Другие же растения приходится периодически подкармливать, например, классическим азотным удобрением — аммиачной селитрой.
Получают же это удобрение на химкомбинатах, используя в качестве основы реакцию Габара-Боша. Она названа так по именам двух нобелевских лауреатов, которые разработали еще в первой половине прошлого века метод синтеза аммиака путем фиксации азота из воздуха. И работы Эртля тоже восходят к 60-м годам XX века, когда он начал изучать и совершенствовать этот процесс.
Окисление же окиси углерода на палладии с целью превращения СО в СО2 необходимо для обезвреживания угарного газа, возникающего при сжигании топлива автомобильным двигателем.
В исследованиях Эртля на поверхности платины были обнаружены также и реакции особого свойства — колебательные, то есть способные поочередно менять направление подобно тому, как колеблется маятник ходиков. Такие реакции довольно широко распространены в природе; знание их особенностей помогает не только химикам, но и медикам. Используя фотоэлектронную микроскопию, Эртль получил также первые наглядные изображения колебательного процесса.
Борьба со ржавчиной
Правда, и у Эртля были предшественники. Так, еще в начале прошлого века выдающийся американский ученый, лауреат Нобелевской премии Ирвинг Ленгмюр создал теорию катализа, основанную на двух механизмах.
Согласно первому, во время химической реакции молекулы взаимодействуют в адсорбционном слое на поверхности катализатора. Второй механизм назван ударным. Согласно ему получалось, что реакция идет не только на поверхности, но и в самой структуре катализатора.
Поначалу считалось, что именно этот вариант главный, именно он действует в большинстве случаев. Однако Эртлю удалось доказать, что на самом деле работает главным образом именно первый механизм: реакции проходят в основном на поверхности катализатора.
Это стало фундаментальным открытием, которое сегодня имеет большое практическое значение. Во многих процессах катализаторы стали использовать в виде тонких пленок и порошков, имеющих большую площадь соприкосновения с реагирующими веществами, что обеспечивает высокую производительность индустриальных процессов.
Катализатор в выхлопной трубе современного автомобиля.
Еще один очевидный пример поверхностных процессов — коррозия металлов, происходящая на стыке твердого тела, жидкости и газа. Говоря проще, железо будет ржаветь лишь во влажной среде при наличии кислорода. При этом оно окисляется до гидроксида, образуя на поверхности бурую рыхлую массу — ржавчину. Причем в некоторых странах, особенно с влажным и теплым климатом, процесс этот идет столь быстро, что ежегодно в ржавчину превращается до 25 % производимого железа и его сплавов.
Профессор Эртль разобрался в процессах коррозии и предложил ингибиторы — вещества, которые, в противоположность катализаторам, замедляют окислительные процессы. Разработаны им и рецепты антикоррозийных покрытий, которые позволяют значительно уменьшить экономический ущерб, наносимый ржавчиной.
В последнее время на основе исследований Эртля разрабатываются водородные топливные элементы, которые помогут решить проблемы поисков альтернативных источников энергии и избавить автомобили от бензиновых двигателей.
А. ОРЛОВ, научный обозреватель «ЮТ»
ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Как смоделировать ядерный взрыв?
Z-машина: аналог приходит на помощь цифре
Сейчас, когда многим кажется, что нет предела возможностям суперкомпьютеров, даже специалисты, стали забывать, что кроме цифровых вычислительных машин в технике некогда широко применялись аналоговые. Но, похоже, аналоговые вычислительные установки еще не сказали своего последнего слова.
Для начала несколько слов о том, как работают аналоговые вычислительные машины. Представьте, что вам нужно решить классическую задачу о бассейне и двух трубах. Через одну трубу в бассейн вода вливается, через другую выливается, а вам нужно определить, сколько воды окажется в бассейне спустя определенное количество времени.