По словам Меллера, новые материалы обеспечивают сверхмалое трение и невероятно износоустойчивы. В процессе обкатки двигателя частицы углерода переносятся от поршня на облицовку. После этого взаимодействие практически сводится к нулю — коэффициент трения падает до 0,008. Это даже меньше, чем при скольжении на коньках.
Камера сгорания тоже изготовлена из пористой керамики. Причем выглядит она на редкость необычно. Плод конструкторской мысли Франца Дурста и его коллег из немецкого Университета Эрланген-Нюрнберг представляет собой керамическую болванку из волокон оксида алюминия или карбида кремния. Однако, если взглянуть на нее через микроскоп, видно, что вся структура изрешечена крошечными порами. Каждая из них работает как миниатюрная камера сгорания, обеспечивая идеальную среду для сжигания топлива. Оно сгорает без остатка при оптимальной температуре около 1200 °C.
Схема парового двигателя нового поколения.
Паромобиль XXI века (Idea-Fabia).
В процессе испытаний разработчики обнаружили, что их паровой двигатель выбрасывает практически чистый углекислый газ. А количества окиси азота и угарного газа не превышают десяти частей на миллион — это примерно один процент от обычного выброса большинства современных двигателей внутреннего сгорания. Причем конструкторы рассчитывают, что им удастся сократить и эти выбросы как минимум вдвое.
Повышенная экономия топлива — еще одно преимущество нового изобретения. Конструкторы Enginion говорят, что их двигатель способен состязаться по экономичности с дизелем. После воспламенения топлива его камера быстро разогревается и начинает генерировать пар. Система может выйти на рабочий режим примерно за 20 с.
Есть у парового автомобиля и другие достоинства. В отличие от машин с двигателем внутреннего сгорания, здесь не нужны сцепление и коробка передач. Чтобы увеличить мощность или скорость, достаточно впустить в цилиндры больше пара. Тяговые же характеристики паровика таковы, что он способен с места рвануть так, что передние колеса оторвутся от земли.
Кроме автомобилей, новые двигатели могут использоваться на мопедах и мотоциклах, лодках и в стационарных установках, которые способны обеспечить энергией коттедж на одну семью или даже многоквартирный дом.
По материалам New Scientist
Кстати…
РОБОТ НА ПАРУ?
Когда группа исследователей Университета Вандербильда в штате Теннесси затребовала для своей работы огромное количество перекиси водорода, снабженцы поначалу удивились. Однако вскоре выяснилось, что ученые решили использовать свойство перекиси легко разлагаться, выделяя тепло, необходимое для получения пара. А уж пар будет питать новые двигатели, которые в 50 раз мощнее самых лучших электромоторов такого же размера и веса.
По мнению разработчика Майкла Голдфарба, паровые роботы смогут работать до 10 часов подряд, в то время как нынешним энергии аккумуляторов хватает максимум на 25 минут.
«Электродвигатели обеспечивают либо мощность, либо скорость, но никогда обе характеристики одновременно, — поддержал коллегу Джерри Прэтт, сотрудник Центра разработки средств перемещения роботов Массачусетского технологического института. — А вот новые паровые машины умеют и то и другое»…
Тут, пожалуй, стоит припомнить, что американцы были далеко не первыми, кто решил использовать для приведения в движение роботов паровые двигатели. Еще в 1893 году английский механик Джордж Мур создал механического человека, который приводился в движение паровой машиной мощностью 0,5 л.с. Тот развивал скорость до 15 км/ч, держа во рту сигару, служившую дымоходом. Однако ни о какой полезной работе речи в то время не шло, поскольку всю свою силу паровой андроид расходовал на то, чтобы тянуть за собой тележку с топливом для собственной же топки.
Так, говорят, выглядел механический человек Дж. Мура.
Об этой интересной машине вскоре забыли, да так прочно, что, когда понадобились малогабаритные двигатели для привода компрессоров или гидравлических насосов при создании роботов и «скафандров»-экзоскелетонов для солдат будущего, которые были бы способны поднимать сразу по полтонны груза, конструкторы решили было воспользоваться двигателями внутреннего сгорания.
Однако, по словам Прэтта, оказалось, что эти устройства очень шумят и выхлоп их настолько силен, что в помещении их использовать вообще нельзя. Вот тогда и решили испробовать для новой роли старую добрую паровую машину. Голдфарб считает, что паровая система вообще гораздо эффективнее для преобразования химической энергии в кинетическую. Ей не нужно ни мудреного смесителя, ни зажигания. Да и шумит она не очень; разве изредка пошипит стравливаемый пар.
Прототип нынешнего парового робота.
Сегодня в крупных городах скорость движения автомобиля приближается к скорости пешехода. Ничего странного, так случалось даже в Древнем Риме, когда в городе становилось слишком много экипажей. Если говорить о разумных интересах основной массы населения, то идеальное решение — общественный транспорт. В автобусе или трамвае человек занимает в 25(!) раз меньше места на улице, чем в автомобиле. Однако, что говорить, личный автомобиль удобнее. Впрочем, это не обязательно должен быть автомобиль.
В США появилась одноместная повозка с двумя колесами (рис. 1). Работает она на аккумуляторах, развивает скорость около 30 км/ч и не имеет ни руля, ни тормозов в обычном их понимании. Достаточно встать на подножку «Джинджера» — так называется это средство — и, держась за рукоятку, податься вперед. «Джинджер» начинает двигаться. Если вы сделаете это более энергично, скорость будет больше. Для остановки достаточно чуть-чуть откинуться назад.
Рис. 1
Устройство автоматики «Джинджера» держится в секрете. Поговаривают о применяемых в нем датчиках ускорения и гироскопах от ракет. Может быть. Но природа для таких целей применяет крохотные камушки отолиты, расположенные в лабиринте внутреннего уха, где находится наш орган равновесия. Перекатываясь при наших движениях, камушки отолиты давят на нервные окончания, и те посылают в мозг информацию о перемещении тела.
Удивительно, но столь простое устройство обеспечивает устойчивость и птицы, и акробата. Не исключено, что в качестве датчика равновесия для любительского «Джинджера» можно использовать систему из маятника и контакта (рис. 2).
Примечание. Маятник снабжен демпфером-успокоителем колебаний. Электромоторы соединены последовательно, благодаря чему они выполняют функцию автомобильного дифференциала. Батарея аккумуляторов располагается в подножке.
Подобные датчики можно купить в магазинах систем охраны. Вот как он мог бы работать. Водитель встает на подножку и слегка наклоняет машину вперед. Замыкаются контакты, и включается двигатель. Колеса перемещают центр тяжести водителя назад. Стойка машины принимает вертикальное положение, контакт размыкается, и двигатель останавливается. Тогда водитель делает новый наклон вперед. Такая езда не сложнее езды на велосипеде.
Поворот машины будет происходить за счет наклона тела водителя вправо-влево.
На следующей фотографии (рис. 3) японский микроавтомобиль «Дженео-Бол». По сравнению с «Джинджером» это «мобильное яйцо» удобнее тем, что пассажир сидит. Управляется «яйцо» голосом.
Рис. 3
Способ интересный, но крайне сомнительный. Вспомните, сколько движений делает рука водителя, лежащая на рулевом колесе. Если подавать машине столько команд, человеку пришлось бы во время езды просто не закрывать рот. Впрочем, быть может, это и не так. В сообщениях говорится о высокой степени автоматизации транспортного средства. Для предотвращения столкновения с препятствием применяется радиолокатор, а маршрут движения отслеживается через спутник. Очевидно, что всю эту премудрость с успехом заменил бы джойстик. Есть у «Дженео-Бола» и еще одна особенность. Он имеет два колеса, расположенных одно за другим, как у мотоцикла. Но, если мотоцикл на остановке падает, то «Дженео-Бол» на остановках сохраняет равновесие благодаря встроенному в него волчку-гироскопу.
Способности волчка сохранять положение своей оси в пространстве, невзирая на внешние условия, известны давно.
Но первым экипажем, где это было применено, является двухколесный легковой автомобиль, поразивший лондонцев в начале прошлого века (рис. 4).