Я попытался что-то спросить, но Сэмми оборвал меня:
– Тсс! Смотри! Вон там!
В дверях появился человек, который был старше всех присутствующих, – лет шестидесяти, среднего роста, исхудавший до последней степени. Он был одет в толстое пальто и надвинутую на уши вязаную шапку. На секунду он остановился, озирая зал рассеянным взглядом из-за толстых очков. Никто не обратил на него внимания: очевидно, он бывал здесь постоянно. Человек медленно прошел к чайному столу, ни с кем не поздоровавшись, налил себе чашку чистого кипятка из чайника и сел возле окна. Потом он медленно снял пальто. Под ним оказался теплый пиджак и еще четыре-пять свитеров, от которых видны были воротники.
– Кто это? – спросил я шепотом.
– Угадай!
– Понятия не имею – он похож на бродягу. Он что, сумасшедший?
Сэмми захихикал.
– Друг мой, это Рок твоего дяди, тот, кто дал ему предлог, чтобы бросить математику. Это не кто иной, как отец теоремы о неполноте, великий Курт Гёдель!
Я просто ахнул:
– Боже мой! Вот это – Курт Гёдель? Но почему он так одет?
– Очевидно, он убежден – вопреки общему несогласию его врачей, – что у него очень больное сердце, и что если он не изолирует себя от холода всей этой теплой одеждой, оно остановится.
– Но здесь же тепло!
– Первосвященник Высшей Логики, современный Аристотель, с твоим заключением не согласен. Кому же из вас я должен верить, тебе или ему?
На обратном пути Сэмми развернул целую теорию.
– Я думаю, что сумасшествие Гёделя – а он, несомненно, в некотором смысле полностью сумасшедший – это цена, которую он заплатил за то, что слишком приблизился к Истине в ее абсолютной форме. Какой-то поэт сказал, что «человек не может вынести слишком много реальности», или что-то вроде этого. Вспомни библейское Древо Познания или Прометея из вашей мифологии. Такие люди переходят положенный предел; они узнают больше, чем должно знать человеку, и за этот грех гордыни им приходится расплачиваться.
Дул ветер, кружа вокруг нас мертвые листья.
Сокращаю рассказ до минимума (я имею в виду рассказ о моей жизни).
Я так и не стал математиком, и уже не в результате интриг дяди Петроса. Хотя его «интуитивная» низкая оценка моих способностей определенно сыграла роль в моем решении, создавая постоянное, подталкивающее чувство сомнения в себе, настоящей причиной был страх.
Примеры математических enfantsterribles [29], упомянутых в рассказе дяди: Сринивасы Рамануджана, Алана Тьюринга, Курта Гёделя и – не в последнюю очередь – его самого, заставили меня крепко задуматься, а действительно ли я готов быть великим математиком. Это были люди двадцати пяти лет от роду, которые брались за проблемы невероятной трудности и исторической важности – и решали их. В чем я был согласен с дядей, так это в том, что не хотел становиться посредственностью и «ходячей трагедией», как он это назвал. Математика, как учил меня Петрос, признает только величайших, и этот вид естественного отбора единственной альтернативой славе предлагает полный провал. Да, но я тогда был исполнен надежд и иллюзий относительно своих способностей, и не профессиональной неудачи я тогда испугался.
Все началось с жалкого зрелища – отца теоремы о неполноте, укутанного в несколько слоев ваты, великого Курта Гёделя в виде старой развалины, в полном одиночестве пьющего кипяток в холле Принстонского института.
Вернувшись к себе в университет после визита к Сэмми, я просмотрел биографии великих математиков, сыгравших роль в дядиной истории. Из шести упомянутых им в рассказе только двое – всего треть – прожили жизнь, которую можно назвать более или менее счастливой, и это были двое самых сравнительно слабых из шести – Каратеодори и Литлвуд. Харди и Рамануджан пытались покончить жизнь самоубийством (Харди дважды), а Тьюрингу такая попытка удалась. О прискорбном состоянии Гёделя я уже говорил [30]. Добавить сюда дядю Петроса – и статистика получается еще мрачнее. Хотя я по-прежнему восхищался романтической храбростью и настойчивостью его юности, но не мог сказать то же самое о растраченной второй половине его жизни. Впервые я увидел его таким, каким он был на самом деле: печальный анахорет, без общественной жизни, без друзей, без надежд, убивающий время за шахматными задачами. Нет, он не был образцом жизни, наполненной смыслом.
Обрисованная Сэмми теория гордыни преследовала меня с той минуты, как я ее услышал, и после краткого знакомства с историей математики я принял ее полностью. У меня в мозгу продолжали звучать его слова об опасности приближения к Истине в ее абсолютной форме. Пресловутый «сумасшедший математик» был куда больше фактом, чем вымыслом. Мне все сильнее казалось, что адепты Царицы Наук – мотыльки, летящие на нечеловеческий свет, яркий, но обжигающий и суровый. Некоторые не могли его долго выдержать – Ньютон и Паскаль, например, оставившие математику ради теологии. Другие выбирали случайные, импровизированные выходы – немедленно приходит на ум безумный вызов Эвариста Галуа, причина его безвременной гибели. И наконец, иные выдающиеся умы не выдерживали и рушились. Георг Кантор, отец теории множеств, закончил жизнь в сумасшедшем доме. Рамануджан, Харди, Тьюринг, Гёдель и многие другие были так зачарованы манящим светом, что подлетали слишком близко, обжигали крылья и падали замертво.
В общем, я вскоре понял, что если бы даже у меня и был такой дар (в чем я серьезно усомнился, послушав дядю Петроса), меня абсолютно не прельщает подобная несчастная судьба. Видя с одного борта Сциллу посредственности, а с другого – Харибду безумия, я решил сбежать с корабля. Хотя я в июне и получил степень бакалавра искусств по математике, но еще раньше подал на последипломное обучение по специальности «Экономика бизнеса» – область знаний, которая, как правило, материала для трагедий не поставляет.
Да, и спешу добавить, что никогда не пожалел о годах своих математических надежд. Узнать немножко настоящей математики, пусть даже очень немножко – все равно это бесценный жизненный опыт. Конечно, повседневные проблемы прекрасно можно решать, не зная системы аксиом Пеано-Дедекинда, а знание классификации простых конечных групп никак не гарантирует успех в делах. Зато не математик не может даже представить себе радости, которой он лишен. Соединение Истины и Красоты, открывающееся в понимании важных теорем, никаким другим видом человеческой деятельности не достигается, разве что (здесь я некомпетентен) какой-нибудь мистической религией. Пусть даже мое математическое образование было жалким, пусть я только омочил ноги в безмерном океане математики, это навсегда изменило мою жизнь, дало мне чуть почувствовать вкус высшего мира. Мне стало легче поверить в существование идеала, даже ощутить его.
И за это я в вечном долгу у дяди Петроса: я бы никогда не сделал этого выбора, не взяв дядю за сомнительный образец.
Мое решение оставить карьеру математика было для отца радостным сюрпризом (бедняга впал в глубокое отчаяние в мои последние студенческие годы), и сюрприз стал еще радостнее, когда он узнал, что я пойду в школу бизнеса. А когда я, завершив обучение и отслужив в армии, вступил в семейное дело, счастье его стало полным.
Несмотря на этот поворот кругом (или благодаря ему?), мои отношения с дядей Петросом расцвели новым цветом, когда я вернулся в Афины, и даже следы горечи в моем к нему отношении полностью растаяли. Я постепенно входил в рутину работы и семейной жизни, а визиты к дяде стали частой привычкой, даже необходимостью. Наши встречи были воодушевляющим противоядием против перемалывающих жерновов реального мира. Встречи с ним помогли мне сохранить ту часть личности, которую многие теряют или о которой забывают, взрослея, – назовите эту часть Мечтателем, или Странником, или просто Ребенком внутри взрослого. Однако я не понимал, что моя дружба дает ему, если не считать общества, в котором он, по его словам, не нуждался.
Во время моих посещений Экали мы мало говорили, потому что нашли способ общения, лучше подходящий двум бывшим математикам: шахматы. Дядя Петрос был великолепным учителем, и вскоре я стал разделять его страсть к игре (увы, не талант).
В шахматах я также впервые увидел его как мыслителя. Когда он анализировал для меня классические партии или недавние встречи лучших шахматистов мира, меня наполняло восхищение работой его блестящего ума, немедленным проникновением в суть самых сложных проблем, аналитической мощью, вспышками озарения. Когда он склонялся над доской, лицо его застывало в глубокой сосредоточенности, взгляд становился острым и проницательным. Логика и интуиция, с которыми он два десятилетия атаковал одну из самых грандиозных проблем, сверкали в его глазах.
Однажды я его спросил, почему он никогда не участвует в официальных турнирах.