Рис. 2. к ст. Эллипс.
Рис. 1. к ст. Эллипс.
Э'ллипс ине'рции в сопротивлении материалов, графическое изображение, используемое для вычисления осевых и центробежных моментов инерции плоской фигуры (например, поперечного сечения стержня) относительно осей, проходящих через её центр тяжести. При построении Э. и. его полуоси, численно равные главным радиусам инерции фигуры, совмещаются с её главными центральными осями.
Э'ллипс (от греч. elleipsis — нехватка, опущение, выпадение), пропуск в речи (тексте) подразумеваемой языковой единицы: звука или звукосочетания (обычно в разговорной речи: «када» — когда, «мож-быть» — может быть), слова (словосочетания), названного в контексте («У отца был большой письменный стол, а у сына маленький»), составляющего часть фразеологического оборота («Ты в любом случае выйдешь сухим» [из воды]), предсказываемого значением и (или) формой др. слов («Ты на работу?» [идёшь]; [Я] «сижу за решёткой в темнице сырой...» — Пушкин), ясного из ситуации («Мне чёрный» [кофе, хлеб...]). Э. синтаксического члена, не восстанавливаемого однозначно, носит экспрессивный, эмоциональный характер и используется как фигура стилистическая («Я за свечку, свечка — в печку», К. Чуковский).
Эллипсо'ид (от эллипс и греч. eidos — вид), замкнутая центральная поверхность второго порядка . Э. имеет центр симметрии О (см. рис. ) и три оси симметрии, которые называются осями Э. Точки пересечения координатных осей с Э. называются его вершинами. Сечения Э. плоскостями являются эллипсами (в частности, всегда можно указать круговые сечения Э.). В надлежащей системе координат уравнение Э. имеет вид:
x 2 /a 2 +y 2 /b 2 +z 2 /c 2 = 1.
Рис. к ст. Элипсоид.
Эллипти'ческая геоме'трия, то же, что Римана геометрия .
Эллипти'ческая то'чка поверхности, точка, в которой полная кривизна поверхности положительна. В окрестности Э. т. поверхность расположена по одну сторону от своей касательной плоскости.
Эллипти'ческие гала'ктики, гигантские звёздные системы, имеющие форму эллипсоида. Э. г., как правило, не содержат космической пыли. См. Галактики .
Эллипти'ческие интегра'лы, интегралы вида
,
где R (x, у ) — рациональная функция х и , а Р (х ) — многочлен 3-й или 4-й степени без кратных корней.
Под Э. и. первого рода понимают интеграл
(1)
под Э. и. второго рода — интеграл
где k — модуль Э. и., 0 < k < 1 (х = sin j, t = sin a. Интегралы в левых частях равенств (1) и (2) называются Э. и. в нормальной форме Якоби, интегралы в правых частях — Э. и. в нормальной форме Лежандра. При х = 1 или j = p/2 Э. и называются полными и обозначаются, соответственно, через
и
Своё назв. Э. и. получили в связи с задачей вычисления длины дуги эллипса и = a sin a, v = b cos a(a < b ). Длина дуги эллипса выражается формулой
где — эксцентриситет эллипса. Длина дуги четверти эллипса равна E (k ). Функции, обратные Э. и., называются эллиптическими функциями .
Эллипти'ческие координа'ты, координаты, связанные с семейством софокусных эллипсов и гипербол (см. Софокусные кривые ). Э. к. точки М и её декартовы координаты х, у связаны соотношениями х = с chu cos v, у = с shu sin v.
Эллипти'ческие траекто'рии, траектории , которые может описывать материальная точка (или центр масс тела) при движении под действием силы ньютонианского тяготения . В поле тяготения Земли, если пренебречь сопротивлением среды, Э. т. будет в 1-м приближении траектория центра масс тела, которому вблизи поверхности Земли сообщена начальная скорость , где » 11,2 км/сек — вторая космическая скорость (R — радиус Земли, g — ускорение силы тяжести).
Эллипти'ческие фу'нкции, функции, связанные с обращением эллиптических интегралов . Э. ф. применяются во многих разделах математики и механики как при теоретических исследованиях, так и для численных расчётов.
Подобно тому как тригонометрическая функция u = sinx является обратной по отношению к интегралу
так обращение нормальных эллиптических интегралов 1-го рода
где z = sin jw, k — модуль эллиптического интеграла, порождает функции: j = am z — амплитуда z (эта функция не является Э. ф.) и w = sn z = sin (am z ) — синус амплитуды. Функции cn — косинус амплитуды и dn z — дельта амплитуды определяются формулами
Функции sn z, cn z, dn z называют Э. ф. Якоби. Они связаны соотношением
sn2 z + cn2 z = k2 sn2 z + dn2 z = 1.
На рис. представлен вид графиков Э. ф. Якоби. Они связаны соотношением
sn2 z + cn2 z = k 2 sn2 z + dn2 z = 1
На рис. представлен вид графиков Э. ф. Якоби для действительного x и 0 < k < 1; а
— полный нормальный эллиптический интеграл 1-го рода и 4K — основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z — двоякопериодическая. Её второй основной период равен 2iK, где
и — дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n — любые целые числа.
Функции Периоды Нули Полюсы sn
z 4
Km + 2
iK'n 2
mK + 2
iK'n }2
mK + (2
n + 1)
iK' cn
z 4
K + (2
K + 2
iK' )
n (2
m + 1)
K + 2
iK'n dn
z 2
Km + 4
iK'n (2
m + 1)
K + (2
n + 1)
iK Э. ф. Вейерштрасса Ã(х ) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода
где параметры g 2 и g 2 — называются инвариантами Ã(x ). При этом предполагается, что нули e 1 , e 2 и e 3 многочлена 4t 3 — g 2 t — g 3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса Ã(х ) связана с Э. ф. Якоби следующими соотношениями:
,
,
.
Любая мероморфная двоякопериодическая функция f (z ) с периодами w1 и w2 , отношение которых мнимо, т. е. f (z + m w1 + п w2 ) = f (z ) при m , n = 0, ± 1, ±2,... и , является Э. ф. Для построения Э. ф., а также численных расчётов применяют сигма-функции и тэта-функции .