Ознакомительная версия.
"Шнуровочная" философия природы не только отрицает существование базисных составляющих материи, она вообще не принимает никаких фундаментальных законов природы или обязательных принципов. Все теории естественных явлений, включая законы природы, считаются здесь созданиями человеческого разума. Они являются концептуальными схемами, представляющими более или менее адекватные приближения, и их не следует смешивать с точными описаниями реальности или с самой реальностью. История физики двадцатого столетия — непростой процесс; он включает не только блестящие достижения, но и концептуальную путаницу, драматичные человеческие конфликты. Физикам потребовалось много времени, чтобы отказаться от базисных установок классической науки и согласованного взгляда на реальность. Новая физика повлекла за собой не только смену понятий материи, пространства, времени и линейной причинности, но и признание того, что парадоксы составляют существенный аспект новой модели Вселенной. Уже после того, как математический аппарат теории относительности и квантовой теории был завершен, принят и усвоен главным направлением науки, физики по-прежнему далеки от единодушия в вопросах философской интерпретации и метафизических приложений этой системы мышления. Только в отношении квантовой теории существует несколько интерпретаций ее математического аппарата (Jammer, 1974; Pagels, 1982).
Даже весьма образованные и передовые физики-теоретики в силу своего воспитания наделяют повседневную реальность теми свойствами, какие ей приписаны в классической физике. Многие из специалистов отказываются иметь дело с неразрешенными философскими вопросами квантовой теории и склоняются к строго прагматическому подходу. Они довольствуются тем, что математический аппарат квантовой теории точно предсказывает результаты экспериментов, и настаивают на том, что именно это и только это имеет значение.
Еще один важный подход к проблемам квантовой теории основан на стохастической интерпретации. В отношении событий феноменального мира физики применяют статистический подход, если им не известны все механические детали системы, которая должна быть изучена. Они называют эти неизвестные факторы "скрытыми переменными". Те, кто отдает предпочтение стохастической интерпретации квантовой теории, пытаются продемонстрировать, что она является по существу классической теорией вероятностных процессов и что радикальный отход от концептуальной структуры классической физики неоправдан и ошибочен. Многие вслед за Эйнштейном верят, что квантовая теория — это особый род статистической механики, дающий только средние значения измеряемых величин. На более глубоком уровне каждая отдельная система управляется детерминистскими законами, которые предстоит открыть в будущем при помощи более точных исследований. В классической физике скрытые переменные — это локальные механизмы. Джон Белл представил доказательство, что в квантовой физике такие скрытые переменные (если они существуют) должны быть нелокальными связями с общим пространством, действующими мгновенно.
Копенгагенская интерпретация, связанная с именами H. Бора и В. Гейзенберга, до 1950 года являлась ведущей точкой зрения на квантовую теорию. В ней выделен принцип локальной причинности и подвергнута сомнению объективность существования микромира. В соответствии с этой точкой зрения не существует реальности, пока нет восприятия этой реальности. В зависимости от условий проведения эксперимента различные дополняющие аспекты будут становиться явными. Именно факт наблюдения нарушает неразрывную целостность мироздания и рождает парадоксы. Мгновенное переживание реальности вовсе не парадокс. Парадокс возникает, когда наблюдатель пытается построить историю своего восприятия. И происходит это потому, что нет четкой разделительной линии между нами и реальностью, которая существовала бы вне нас. Реальность конструируется ментальными актами и зависит от того, что и как мы выбираем для наблюдения.
Среди физиков-теоретиков были и те, кто пытался разрешить парадоксы квантовой физики за счет изменения основ научной теории. Некоторые сдвиги в математике и философии привели к идее, что причина несоответствий может лежать в логической подоплеке теории. Поиски в этом направлении привели к попыткам заменить язык обычной булевой логики квантовой логикой, в которой логический смысл слов «и» и «или» был изменен.
И наконец, самой фантастической интерпретацией квантовой теории стала гипотеза множественности миров, связанная с именами Хью Эверета, Джона А. Уилера и Нила Грэхема. В данном подходе снимаются несоответствия между общепринятыми интерпретациями и "коллапсом волновой функции", вызванным самим актом наблюдения. Это становится возможным, однако, лишь ценой коренного пересмотра наших наиболее фундаментальных положений относительно природы реальности. Гипотеза постулирует, что Вселенная в каждое мгновение расщепляется на бесконечное число вселенных. Благодаря этому множественному ветвлению актуально реализуются, хотя и в разных вселенных все возможности, предусмотренные математическим аппаратом квантовой теории. Реальность тогда есть бесконечность этих вселенных, существующих во всеобъемлющем «суперпространстве». Поскольку отдельные вселенные не сообщаются между собой, не может быть никаких противоречий.
Наиболее радикальными с точки зрения психологии, психиатрии и парапсихологии являются интерпретации, предполагающие ключевую роль психики в квантовой реальности. Авторы, мыслящие в этом направлении, предполагают, что ум или сознание реально влияют или даже создают материю. Здесь должны быть упомянуты работы Юджина Уигнера, Эдварда Уокера, Джека Сарфатти и Чарлза Мьюзеса.
Характер и объем этой книги не позволяют в деталях изложить удивительные и многообещающие перемены в картине Вселенной и реальности, предложенные квантово-релятивистской физикой. Заинтересованный читатель найдет более полную информацию в книгах специалистов в этой области. И все же еще один существенный пункт следует упомянуть. Эйнштейн, чьи работы положили начало развитию квантовой физики, до конца своей жизни упорно отказывался признать фундаментальную роль вероятности в природе. Он выразил свою позицию в знаменитом высказывании "Бог не играет в кости". Даже после нескольких дискуссий с лучшими представителями квантовой физики он сохранил убеждение, что когда-нибудь в будущем будет найдена детерминистская интерпретация в терминах "скрытых локальных переменных". Для того чтобы показать ошибочность боровской интерпретации квантовой теории, Эйнштейн придумал мысленный эксперимент, который позже стал известен как эксперимент Эйнштейна-Подольского-Розена (ЭПР). По иронии судьбы этот эксперимент несколькими десятилетиями позже послужил основанием для теоремы Белла, доказавшей, что картезианская концепция реальности несовместима с квантовой теорией (Bell, 1966; Сарга, 1982).
По упрощенной версии ЭПР-эксперимента два электрона вращаются в противоположных направлениях, так что их общий спин равен нулю. Их удаляют друг от друга, пока расстояние между ними не станет макроскопическим; затем их предполагаемые спины измеряются двумя независимыми наблюдателями. Квантовая теория предсказывает, что в системе из двух частиц с общим нулевым спином, спины относительно любой оси всегда будут скоррелированы, т. е. противоположны. Хотя до действительного измерения можно говорить о тенденции спина, как только измерение проведено, потенциальная возможность становится реальным фактом. Наблюдатель может выбрать любую ось измерения, и это моментально определит спин другой частицы, которая может находиться за тысячи миль от него. Согласно теории относительности, никакой сигнал не может распространяться быстрее скорости света, следовательно, эта ситуация в принципе невозможна. Мгновенную, нелокальную связь между такими частицами нельзя осуществить сигналом в эйнштейновском смысле; коммуникация такого рода выходит за рамки принятой концепции передачи информации. Теорема Белла поставила физиков перед неприятной дилеммой: предполагается одно из двух — либо мир не является объективно реальным, либо в нем действуют сверхсветовые связи. По утверждению Генри Стаппа, теорема Белла показала "глубокую истину, что Вселенная либо лишена всякой фундаментальной закономерности, либо фундаментально нераздельна" (Stapp, 1971).
Хотя квантово-релятивистская физика вызвала наиболее убедительную и радикальную критику механистического мировоззрения, важные решения были приняты благодаря результатам исследований в других областях. Резкими изменениями подобного рода научное мышление обязано развитию кибернетики, теории информации, теории систем и теории логических типов. Одним из главных представителей этого решительного поворота в современной науке стал Грэгори Бейтсон.[14] Он утверждает, что мышление на языке субстанции и дискретных объедков является серьезной ошибкой в логической типологии. В повседневной жизни мы имеем дело не с объектами, а с их сенсорными преобразованиями или с сообщениями о различиях; в смысле теории Коржибского (Korzybski, 1933), мы имеем доступ к картам, а не к территории. Информация, различение, форма и паттерн, составляющие наше знание о мире, являются лишенными размерности сущностями, которые нельзя локализовать в пространстве или во времени. Информация течет в цепях, которые выходят за общепринятые границы индивидуальности и включают все окружающее. Этот способ научного мышления делает абсурдной попытку понять мир в терминах отдельных объектов и сущностей, рассматривать индивида, семью или род как дарвиновские сообщества в борьбе за выживание, проводить различие между умом и телом, или идентифицироваться с эго-телесной единицей ("Эго, облаченное в кожу" у Алана Уотса). Как и в квантово-релятивистской физике акцент смещается от субстанции и объекта к форме, паттерну и процессу.[15]
Ознакомительная версия.