Глава 1. Нам посчастливилось оказаться здесь
Случайные события – от большого взрыва до рождения человека как вида
Начнем наше изучение случайности с рассмотрения цепочки случайных событий от образования Вселенной к возникновению человеческих существ вроде нас с вами. Разумеется, нет никого, кто бы в точности на вас походил. Вы когда-нибудь, глядя на сестру или брата, задумывались над тем, откуда взялась разница между вами? Возможно, вы и обладаете общими генетическими корнями, но вы не полностью идентичны, даже если вы близнецы. Разного рода случайные повороты привели к тому, что вы совершенно уникальны. Похоже, то же самое верно и в отношении эволюции человека и человеческой жизни. Речь идет о необычайном путешествии, полном поразительных флуктуаций. Вселенная не обязана была производить материю, не говоря уж о создании планеты с достаточно стабильным климатом, подходящим для появления жизни. Более того, жизнь (особенно сложная, многоклеточная) тоже не должна была появиться. То же самое касается и биологических видов. И когда мы доберемся до рассказа о случайных мутациях, которые сделали человека таким, каким он стал, вы наверняка будете лишь тихо изумляться: как же нам всем повезло оказаться в числе существующих на Земле объектов.
Начнем с самого начала. Стивен Баттерсби и Дэвид Шига как раз готовы объяснить наше космологическое везение. Оказывается, вся наша Вселенная – просто выверт судьбы, флуктуация!
Можно лишь гадать, какие космические совпадения предшествовали зарождению нашей Вселенной. Достаточно сказать, что примерно 13,82 миллиарда лет назад (плюс-минус иоктосекунда[1]) космос решал, каким он станет, когда вырастет.
«Я стану гораздо больше»: видимо, он подумал именно так, если верить самой популярной модели ранних стадий существования Вселенной. Согласно теории расширяющейся Вселенной (инфляционной модели), новорожденную Вселенную пронизывало так называемое инфляционное поле. Оно вызвало экспоненциальное расширение космоса в течение примерно 10–32 с, сделав его плоским и однородным.
Это неплохо объясняет некоторые характеристики нашей Вселенной, которые плохо поддавались трактовке. Но самое любопытное здесь то, что инфляционное поле, пусть и практически однородное, не было совершенно идентичным для каждого кусочка пространства. Причина этого – случайные квантовые флуктуации: они делали пространство чуть более плотным в одном месте и чуть менее плотным – в другом. Тут нам повезло: полная однородность сделала бы Вселенную совсем другой, неинтересной и почти наверняка безжизненной. Случилось так, что один из этих случайных микроскопических квантов шума, усиленных гравитацией, в итоге вырос в гигантское сообщество галактик и их скоплений, именуемое Сверхскоплением Девы. Среди множества его участков – малопримечательный всклокоченный куст, который мы именуем локальной группой. В ней-то и располагается Млечный Путь – наш дом.
Мы знаем все это благодаря тому, что астрономы, вглядываясь в глубины космоса, способны различить пестрый узор космического фонового микроволнового излучения. Это своего рода моментальный снимок процесса роста и объединения, в ходе которого первые стабильные атомы образовались спустя примерно 380 тысяч лет после Большого взрыва. Вариации в этом узоре кажутся совершенно случайными и произвольными. Большинство физиков полагают, что породившие сей узор квантовые флуктуации не имели под собой вообще никакой причины. Иными словами, среди всех счастливых случаев этот – наиболее случайный.
Потом появилась материя. Весьма необычайным кажется уже то, что она вообще существует: космос легко мог бы обойтись без нее. Тогда он просто представлял бы собой скучный океан излучения. Дело в том, что после первоначального расширения Вселенная все же продолжала оставаться невообразимо горячей и плотной. Она была наполнена частицами материи и антиматерии – электронами, позитронами, кварками, антикварками и другими. И все они сновали в ней без всякой определенной цели. Стабильные союзы между частицами, способные порождать звезды, планеты и жизнь, возникнут лишь где-то в отдаленном будущем. И, что тревожнее всего, частицы материи и антиматерии присутствовали в этой смеси в равных количествах (как могло бы показаться проходящему мимо наблюдателю). А значит, ситуация была очень опасная.
Если верить стандартным теориям, вещество и антивещество появились после Большого взрыва в одинаковых количествах. Поскольку при контакте они взаимно аннигилируют, порождая пары фотонов высокой энергии, в сегодняшнем космосе должно было бы существовать лишь одно совершенно неинтересное излучение. Для того чтобы мы с вами могли существовать, что-то – материя или антиматерия – должно было победить: нельзя создать планету или человека из света.
К счастью, было нечто, которое, судя по всему, благоприятствовало созданию материи в самый критический момент – в первые мгновения после Большого взрыва. Небольшого избытка материи по отношению к антиматерии (всего одной лишней частицы вещества на миллиард) было достаточно, чтобы в конце концов привести к сегодняшнему положению дел, когда во Вселенной так много материи. Но как же мог возникнуть такой дисбаланс?
Хотя в некоторых взаимодействиях элементарных частиц и наблюдается своего рода диспропорция в пользу материи, она все же слишком незначительна, чтобы создать даже столь небольшое преимущество. Поэтому физики предполагают, что в ранней Вселенной должен был возникнуть какой-то более сильный дисбаланс (как следствие пока неведомых процессов, лежащих за пределами Стандартной модели физики частиц), где доминировали частицы с высокими энергиями.
Сейчас многие учение все больше подозревают, что такая сверхфизика могла быть изменчивой, различной в разных вселенных, и, похоже, нашей с вами маленькой Вселенной здорово посчастливилось – ей удалось-таки приобрести запасец материи, тогда как многие другие миры превратились в безжизненные пустыни, где царит лишь излучение.
Материя – не единственная потенциальная жертва столь изменчивой и прихотливой физики. Такие процессы могут приводить и к формированию сверхплотных вселенных, схлопывающихся в черные дыры, и к возникновению миров, пронизанных темной энергией, которая быстро разрывает все существующие структуры. С этой точки зрения кажется действительно очень редким событием появление вселенной, где в конце концов возникли условия, благоприятные для жизни человека.
Следующее космическое событие – пришествие небесного огня. Итак, в нашей Вселенной материя победила, и наш мир стал остывать. Вскоре начали формироваться стабильные атомы и молекулы. Спустя 100 миллионов лет возникли первые звезды – гиганты из водорода и гелия. Они жили быстро и умирали молодыми, в мощнейших взрывах, засеивавших космос более тяжелыми элементами, которые, в свою очередь, становились ингредиентами других звезд, а также галактик. Но Солнечная система не возникает сама по себе.
Лишь примерно через 9 миллиардов лет после Большого взрыва в нашем уголке космоса оказалось большое количество водорода, гелия и межзвездной пыли. Но если они планировали не только висеть в пространстве, но и делать что-то еще, требовалось нечто большее: искра, которая воспламенила бы эти облака инертных газов.
В конце концов такая искра вспыхнула. Ключ к ее происхождению таится в метеоритах. В отличие от родных камней нашей планеты, которые часто плавятся и перемешиваются, метеориты остаются практически неизменными после того, как они сконденсировались при формировании Солнечной системы.
Метеориты хранят в себе химические особенности этих далеких тысячелетий.
Так, в метеорите, найденном в 2003 году в индийском Бишунпуре, ученые обнаружили большое количество железа-60 – радионуклида, который в ходе радиоактивного распада превращается через несколько миллионов лет в стабильный никель-60. Поскольку нуклид железо-60 является таким (относительно) короткоживущим, в межзвездном газе обычно содержатся лишь следовые его количества. Высокое содержание этого нуклида в Бишунпурском метеорите позволяет предположить, что Солнечная система сформировалась из гораздо более богатой смеси.
Можно выдвинуть два объяснения. Первое: эту смесь обогатила какая-то сверхновая, находящаяся неподалеку. Вспышки сверхновых – в числе немногих космических процессов, о которых известно, что они порождают большое количество тяжелых радиоактивных изотопов, таких как железо-60. Ударная волна от такого взрыва могла бы запустить процесс образования Солнца и планет, сжимая первичное газовое облако.
Второй вариант: зарождение Солнечной системы происходило по более мягкому сценарию. Красный гигант достаточного размера способен посоперничать со сверхновой по части производства железа-60 и других радиоактивных элементов в соотношении, отвечающем составу исследуемого метеорита. Эти элементы могли образоваться в глубинных слоях звезды; затем конвекционные потоки вынесли бы их на поверхность, после чего они попали бы в пространство как часть могучего звездного ветра, который всколыхнул бы и все газовые облака, оказавшиеся рядом.