My-library.info
Все категории

Феликс Кривин - Карманная школа

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Феликс Кривин - Карманная школа. Жанр: Детская фантастика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Карманная школа
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
19 февраль 2019
Количество просмотров:
245
Читать онлайн
Феликс Кривин - Карманная школа

Феликс Кривин - Карманная школа краткое содержание

Феликс Кривин - Карманная школа - описание и краткое содержание, автор Феликс Кривин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В этой книжке Грамматика, Математика и Физика расскажут о жизни. Они поделятся с вами огромным жизненным опытом, потому что ведь грамматика, математика и физика — очень древние предметы, они многое знают, хотя не обо всем говорят. Они расскажут о Безличном Глаголе, который считает себя важной личностью, об атамане разбойников кровожадном Минусе, который у всех все отнимает, о Белой Тучке, которая выплакала себя, потому что связалась с легкомысленным Ветром. Может быть, с точки зрения школьной науки книжка не без ошибок, но пусть не судят ее строго специалисты: ведь это не настоящая, а всего лишь карманная школа.Окончив «Карманную школу» вы сможете продолжить свое образование в книгах «Несерьезные Архимеды», «Гиацинтовые острова», «Ученые сказки» и «Божественные истории».

Карманная школа читать онлайн бесплатно

Карманная школа - читать книгу онлайн бесплатно, автор Феликс Кривин

Растерялся Перпендикуляр, повис в воздухе.

— Погодите, дайте-ка мне, — сказала Секущая. — У меня эта Точка станет вершиной сразу четырех углов.

Но не тут-то было. При виде Секущей Точка прямо-таки забилась в истерике.

— Не секите меня! — рыдала она. — Я не привыкла, чтобы меня секли!

Что было с ней делать? Махнули на Точку рукой. Не стала она ни центром окружности, ни вершиной угла, а осталась простой точкой на простой прямой, параллельной тысячам других прямых.

ПРОСТАЯ ДРОБЬ

У Числителя и Знаменателя — вечные дрязги. Никак не поймешь, кто из них прав. Числитель толкует одно, а Знаменатель перетолковывает по-своему. Числитель говорит:

— У меня положение выше, почему же я меньше Знаменателя?

А Знаменатель свое:

— Я-то числом побольше, с какой же стати мне ниже Числителя стоять?

Поди рассуди их попробуй!

И ведь что вы думаете — была такая попытка. Целое Число, которому надоело это брюзжание, сказало им напрямик:

— Склочники несчастные, чего вы не поделили? В то время, когда у нас столько примеров, столько задач…

— Тебе, Целому, хорошо, — проворчал Знаменатель, и Числитель (в первый раз!) согласился с ним.

— Знаменательно! — воскликнул Числитель. — Знаменательно, что именно Целое Число делает нам замечание!

— А кто вам мешает стать Целым Числом? Сложитесь с какой-нибудь дробью.

— Ладно, обойдемся без ваших задач и примеров, — сказал Числитель, а Знаменатель, придвинувшись к Целому Числу, выразил эту мысль более категорически:

— Проваливай, пока цело!

Целое Число махнуло на них рукой и приступило к очередным задачам.

А Числитель и Знаменатель призадумались. Потом Числитель нагнулся, постучал в черточку:

— Послушайте, — говорит, — может, нам и впрямь с другой дробью сложиться?

— Э, шалишь, брат, — возразил Знаменатель, — хватит с меня и одного Числителя!

— Если уж на то пошло, — обиделся Числитель, — мне тоже одного Знаменателя предостаточно.

Еще подумали.

Потом Знаменатель стал на цыпочки, постучал в черточку:

— Слышь, ты! А если нам так стать Целым Числом, без другой дроби?

— Можно попробовать, — соглашается Числитель. Стали они пробовать. Числитель умножится на два, и Знаменатель — не отставать же! — тоже на два. Числитель на три — и Знаменатель на столько же.

Умножались, умножались, совсем изнемогли, а толку никакого. Та же дробь, ни больше ни меньше прежней.

— Стой! — кричит Знаменатель. — Хватит умножаться. Делиться давай. Так оно вернее будет.

Стали делиться.

Знаменатель на два — и Числитель на два. Знаменатель на три — и Числитель на столько же. А дробь — все прежняя.

БИССЕКТРИСА

Заспорили Стороны угла, никак между собой не поладят.

— Я, со своей стороны, считаю… — говорит одна Сторона.

— А я считаю, со своей стороны… — возражает ей другая.

Ничего не поделаешь: хоть у них и общий угол зрения, но смотрят-то они на мир с разных сторон!

Проходила как-то между ними Биссектриса. Обрадовались Стороны: вот кто будет их посредником! Спрашивают Биссектрису:

— А вы как думаете?

— А ваше мнение каково?

Стоит посредник посрединке, колеблется.

— Ну скажите же, скажите! — тормошат Биссектрису со всех сторон.

— Я думаю, вы совершенно правы, — наконец произносит Биссектриса, кивая в правую сторону.

— Ах, какая вы умница! — восхищается правая Сторона. — Как вы сразу все поняли!

А Биссектриса между тем поворачивается к левой Стороне:

— Ваша правда, я тоже всегда так думала.

Левая Сторона в восторге:

— Вот что значит Биссектриса! Сразу сообразила, что к чему!

Стоит Биссектриса и знай раскланивается: в одну сторону кивнет — мол, правильно, в другую сторону кивнет — мол, совершенно верно. Мнение Биссектрисы ценится очень высоко, поскольку оно устраивает обе стороны.

УРАВНЕНИЕ С ОДНИМ НЕИЗВЕСТНЫМ

Разные числа — большие и малые, целые и дробные, положительные и отрицательные — впервые встретились в уравнении.

Они любезно, хотя и сдержанно, обменялись приветствиями, а затем стали знакомиться.

— Четверка.

— Очень приятно. Двойка.

— Тройка.

— И я Тройка. Значит, тезки!

— Одна Четвертая…

— Две Четвертых…

— Три Четвертых…

Очень быстро все перезнакомились. Только одно число не назвало себя.

— А вас как зовут? — стали спрашивать у него числа.

— Не могу сказать! — важно ответило это число. — У меня есть причины…

— Ах, подумайте, какие загадки! — затараторила Одна Девятая. — Как можно жить в обществе и совсем не считаться с его мнением!

— Спокойно, спокойно, — вмешался Знак Равенства, самый справедливый знак во всем задачнике. — Все выяснится в свое время. А пока пусть это число остается неизвестным. Мы назовем его Иксом. Что поделаешь, будет у нас уравнение с одним неизвестным.

Все числа согласились со Знаком Равенства, но теперь они вели себя еще сдержанней, чем даже во время знакомства. Кто его знает, что за величина этот Икс? Здесь нужно быть осторожным.

Некоторые попытались заискивать перед. Иксом, по он так важно себя держал, что даже у дробей отпала охота добиваться его расположения.

— Ну нет, — прошептала Двойка Четверке. — Ты как хочешь, а я перебираюсь в другую сторону уравнения. Пусть я буду там с отрицательным знаком, но зато не буду видеть этой персоны.

— И я тоже, — сказала Четверка и вслед за Двойкой перебралась в другую сторону уравнения. За ними последовали две тезки — Тройки, а потом и дроби — Одна Четвертая, Две Четвертых, Три Четвертых — и все остальные числа.

Икс остался один. Впрочем, это его не встревожило. Он решил, что числа просто не хотят его стеснять.

Но числа решили по-другому. Они сложились, перемножились и поделились, а когда все необходимые действия были произведены, Икс ни для кого уже не был загадкой. Он оказался мнимой величиной, такие тоже встречаются в математике.

То-то он так мнил о себе, этот Икс!

ТРЕУГОЛЬНИК

Задумал Угол треугольником стать. Нашел подходящую Прямую линию, взял ее с двух сторон за две точки — и вот вам, пожалуйста, чем не треугольник?

Но Прямая оказалась строгой линией. Сдерживает она угол, ограничивает. Теперь ему не та свобода, что прежде.

А вокруг, как назло, ломаные линии вертятся, выламываются:

— Ну как ты, Угол, со своей Прямой? Ладите?

Что им ответишь? Молчит Угол. Молчит, а сам думает: «Зря я такую прямую линию взял. Ломаные куда удобней!»

За этой мыслью пришла и другая: «А вообще-то, чем я рискую? Можно такую ломаную найти, что она с моей прямой и не пересечется».

Такая ломаная линия быстро сыскалась. Соединил ею Угол те же две точки, что и Прямая соединяла, и — доволен.

Потом еще одной ломаной обзавелся, потом еще одной. А Прямая верит Углу, ни о чем не догадывается.

Но вот ломаные линии, как набралось их много; стали между собой пересекаться. Так закрутили Угол, так завертели, что его среди них и не видать.

Еле выпутался бедняга.

«Хватит, — решил, — возиться с этими ломаками. Лучше уж прямой линии держаться».

И опять остался Угол со своей Прямой. Дружно живут. Хороший треугольник.

Оно и понятно: через две точки, как свидетельствует геометрия, можно провести только одну прямую.

А ломаных — сколько угодно.

ПРОИЗВЕДЕНИЕ

— Смотрите, — говорят соседям, — это наше произведение. Ну, каково? Двузначное число, не то что мы, однозначные.

А произведение и не смотрит на сомножителей. Воротит нос, боится, как бы знакомые сотни чего не подумали. Как-никак сомножители — однозначные числа, стыдно произведению иметь такую родню.

— Произведение ты наше единственное, погляди на нас, хоть словечко молви!

Куда там! До того ли сейчас произведению! Произведение давно забыло, кто его произвел на свет. Теперь произведению с самой Тысячей помножиться в пору!

ФИГУРА

Прибежала Трапеция к Окружности.

— Ох, ты даже себе не можешь, не можешь представить! Сверху плоско, снизу выпукло, а о боках нечего и говорить!

— Что плоско? Что выпукло? Ты объяснишь толком?

— Вот послушай, — стала объяснять Трапеция. — Появилась у нас в учебнике новая фигура. Откуда она взялась, никто не знает. Может, ее кто нарисовал так, для смеха…

— Что же это за фигура?

— Как, ты еще не поняла? Ну пошли, сама посмотришь.

Пошли они смотреть на Фигуру. А там уже, такое творится! Треугольники, Квадраты, Параллелограммы… А в центре эта самая Фигура красуется…

При виде ее Окружность так и покатилась со смеху, но не успела откатиться особенно далеко — остановилась, призадумалась.


Феликс Кривин читать все книги автора по порядку

Феликс Кривин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Карманная школа отзывы

Отзывы читателей о книге Карманная школа, автор: Феликс Кривин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.