Ознакомительная версия.
Чтобы продвинуться вперед, нам нужны две вещи: более высокий уровень «разрешения» и лучшие алгоритмы. Первая задача требует проникнуть глубже внутрь черепной коробки – чтобы, образно говоря, расслышать, как нейроны говорят на своем языке. Для решения второй необходимы более совершенные алгоритмы, способные преодолеть существующие барьеры на пути к получению интересующих нас данных. Как мы уже видели, недостаточно просто соотносить X с Y. Новые алгоритмы должны базироваться на более глубоком понимании мозговой деятельности.
В настоящее время ученые уже могут проникать в более глубокие области мозга и моделировать его активность, выявляя те алгоритмы, которые мы имеем в виду. Весной 2009 года я встречался с Филом Кеннеди (Phil Kennedy), изучающим закономерности возможного взаимодействия между человеческим мозгом и компьютером (brain-machine interfaces). Цель исследования – расшифровать внутреннюю речь людей, из-за мозгового удара (locked-in people) потерявших способность говорить. Этот ученый возглавляет компанию Neural Signals, Inc. [87] , расположенную в одном из пригородов Атланты.
Потеря речи вследствие мозгового удара – это, вероятно, самое ужасное, что с человеком может произойти. Причиной этого расстройства служит нарушение нервной деятельности в одной из старейших (в эволюционном отношении) областей головного мозга – в стволе, передающем двигательные команды. Жертва полностью сохраняет сознание и все ощущения, но вынуждена существовать в оболочке полностью обездвиженного тела. Такой человек не можете ни ходить, ни говорить, ни есть. В столь жестоком положении оказался Жан-Доминик Боби (Jean-Dominique Bauby), французский журнальный редактор, получивший мозговой удар в 1995 году в возрасте 43 лет. Он написал об этом книгу, используя частично уцелевшие возможности левой половины своего тела: под его контролем оставался один лишь левый глаз. Его помощники указывали на ту или иную букву на доске перед ним, выделяя одну за другой, а Жан-Доминик, мигая глазом, как бы говорил «вот эта». Таким образом и были созданы его мемуары « The Diving Bell and the Butterfly» [88] , опубликованные в 1997 году. Автор умер от пневмонии через два дня после их выхода в свет.
Когда я беседовал с доктором Кеннеди, дверь распахнулась, и в комнату вкатили коляску с молодым парнем. Это кресло на колесах чем-то напоминало вездеход Range Rover: везде рычаги, кнопки, трубки, какие-то емкости. Парня звали Эрик Рамсей. Ствол мозга он повредил в 16 лет в автомобильной аварии. Теперь ему исполнилось 26, и все 10 лет он оставался полностью парализованным.
Мы, человеческие существа, улавливаем разницу между жизнью и смертью благодаря десяткам тончайших подсказок, которые инстинктивно посылают нам варьирующие скорость движений мускулы. Мы видим, как меняется наклон головы, как подрагивают веки, как сменяют друг друга оттенки кожи. Я заметил, что Эрик чувствовал смущение. Его глаза были закрыты, будто во сне, а лицо, покрытое легкой испариной, оставалось бледным. Казалось, он не сидел в своем инвалидном кресле, а как бы служил дополнением к нему. Его ноги свободно свисали, а шнурки туфель были завязаны так небрежно, как бывает, когда у помощника не хватает сил на то последнее движение, посредством которого все и приводится в порядок. Руки Эрика покоились на животе безо всякого напряжения, однако пальцы были собраны в кулаки. Его отец толкал коляску вперед. За ним следовала женщина лет 50. На их лицах лежала печать непреходящего и ставшего привычным страдания.
Женщина подсоединила флакон капельницы к концу трубки, скрывавшейся под одеждой на животе Эрика. Эта процедура, сказала она, должна повысить алертность его реакций. Парня привозили сюда три раза в неделю, чтобы с ним поработал доктор Кеннеди. Поэтому все здесь – люди, голоса, стены – несомненно, были хорошо знакомы ему.
Отец Эрика сказал мне, что тот даже подмигнуть не может. Единственным доступным средством общения оставалось движение глаз вверх и вниз – «да» и «нет» соответственно. Однако в то время Эрик, казалось, не был настроен на контакт с окружающими: его взгляд был расфокусирован и казался отсутствующим. Зрение у него испортилось, как пояснил отец, из-за того, что слезные протоки всегда оставались сухими. Я подумал, что мир для Эрика, верно, выглядит так, точно смотришь через стенку из стеклянных кирпичей где-нибудь в комнате отдыха.
За исключением ответов на вопросы в виде «да» и «нет», Эрик не мог больше ничего. Он был полностью отрезан от окружающего мира. Энцефалография была не в состоянии ничем помочь, потому что он не мог в должной мере управлять движением глаз и плохо видел экран. Доски-алфавиты также были бесполезны, поскольку в 2004 году он переболел пневмонией, после чего от его речи осталось только невнятное бормотание [89] .
У Эрика, как и у меня, в голову были вживленны электроды. Его родители попросили меня объяснить ему, как работают мои кохлеарные импланты. Чтобы не лишать его последней надежды, я согласился. Однако сразу же почувствовал себя без вины виноватым, поскольку я был здоров, мог пользоваться телефоном, а также был способен встать с места и выйти наружу, когда все закончится. Но выйти из игры я все же не мог. Его отец сел рядом с Эриком – на случай, если мне понадобится помощь. Я снял с себя правый процессор и поместил его таким образом, чтобы он, как я надеялся, попадал в поле зрения парня. Закончив объяснять все тонкости работы, я спросил, все ли было понятно. Его взгляд немедленно устремился вверх, безошибочно сообщив: «Да, я все понял!» Несомненно, Эрик участвовал в разговоре, обращая внимание на все, сказанное собеседником.
Ибо единственное, что оставалось ему в его положении, – возможность обойтись без своего тела и подключиться к собственному мозгу иным способом. В декабре 2004 года в ту область мозга Эрика, которая, как показало fMRI, в процессе речи контролировала движения подбородка, губ и языка, хирургическим путем было внедрено особое устройство, названное нейротрофическим электродом (neurotrophic electrode). Оно представляло собой три тонких золотых электрода, заключенных в стекловидную оболочку. Верхняя его часть была перфорирована таким образом, чтобы аксоны и дендриты близлежащих нейронов могли проникнуть в него и добраться до самих электродов. Оказавшись внутри устройства, окончания аксонов и нейронов становились электрически изолированными от остального мозга, благодаря чему теперь можно было легко улавливать идущие по ним нервные импульсы [90] .
Существует особая карта-схема, показывающая, куда следует вживлять электроды. В 1909 году немецкий анатом и невролог Корбиниан Бродманн (Korbinian Brodmann) доказал, что головной мозг можно представить в виде схемы из 52 областей (зон), каждая из которых имеет свою функциональность. Примечательно, что и спустя 100 лет эта карта во многом верна. Например, область 17, расположенная в задней части мозга, в основном соответствует зрительной зоне коры, 41 и 42 – слуховой зоне, а 4 – в верхней части мозга – двигательной.
Наибольший интерес для нас представляет именно последняя, поскольку основная ее работа – контролировать совершаемые телом физические движения. Двигательная зона, в свою очередь, подразделяется на секторы, каждый из которых отвечает за двигательную активность соответствующих частей тела. Канадский нейрохирург Уайлдер Пенфилд (Wilder Penfield) в значительной мере дополнил карту-схему, о которой мы говорим. Результаты его работы отображены на диаграмме ниже. Именно здесь и обитают те странные эксцентричные человечки, которых мы называем сенсорными и моторными гомункулусами. Чтобы лучше понять, каким образом каждая из показанных на диаграмме долей соотносится с мозгом в целом, представьте, что зона 4 – это книга. Потянув ее за корешок, вы можете вынуть из ряда подобных или точно так же поставить обратно. Внешняя поверхность «книги» как раз и соответствует области 4. Скажем, если нужно послать сигнал мускулам, обеспечивающим глотание, необходимо простимулировать нижнюю часть данной области.
Карты-схемы подобного рода показывают хирургам, куда вводить электроды. В университете Карнеги-Меллон (University Carnegie Mellon) группа ученых под руководством Эндрю Шварца (Andrew Schwartz) имплантировала в двигательную зону головного мозга обезьяны 100 электродов в виде особой решетки. Устройство считывает команды, направляемые к верхним конечностям примата. Они же затем преобразуются в сигналы, поступающие на «руку» робота. Обезьяны способны управлять роботизированной конечностью в мере, достаточной для того, чтобы протянуть ее в нужном направлении, взять немного пищи и отправить ее в рот. (Собственные конечности приматов не повреждены, но блокированы в процессе эксперимента – чтобы заставить обезьян пользоваться манипулятором) [91] . В настоящее время эта же группа пытается разработать методику контроля конечностей на уровне «кисть – цапфа роботизированной руки» [92] . В университете Брауна научно-исследовательская группа во главе с Джоном Доногью (John Donoghue) применяет ту же самую электродную решетку, имплантируя ее в двигательную зону коры головного мозга парализованных пациентов – чтобы те получили способность управлять курсором компьютерной мыши и некоторыми другими объектами [93] . Мультиэлектродная решетка (Utah array) состоит из основания из кремниевых материалов размером 4 на 4 мм, в котором закреплены тонкие иглы длиной от 1 до 5 мм каждая. Последние покрыты специальным изолирующим составом – за исключением кончиков, которые должны улавливать и передавать сигналы. Сделано это для того, чтобы иглы могли служить проводниками, связанными с основанием решетки. Подобное устройство показано на иллюстрации ниже.
Ознакомительная версия.