Единственный способ избежать вредного действия огурцов — изменить диету. Ешьте, например, суп из болотных орхидей. От него, насколько нам известно, еще никто не умирал.
Напечатано в журнале «The Journal of Irreproducible Results».
(Цит. по книге: Физики смеются. Но смеются не только физики. М., 2006.)
11. Марсианская математика
Не могу не привести запоминающийся отрывок из выступления академика В. И. Арнольда, неутомимого борца против американизации и бурбакизации нашего математического образования.
Французского школьника спросили: «Сколько будет 2 + 3?» Он ответил: «3 + 2, так как сложение коммутативно» (а сосчитать, что это 5, не мог). Основываясь на этом примере, министр науки и образования Франции хотел изгнать из школы математику.
Вот типичный пример задачи, с которой французские школьники легко справляются:
«Доказать, что все поезда RER на планете Марс красно-синего цвета.»
Вот образец решения:
Обозначим через Xn(Y) множество всех поездов системы Y на планете номер n (считая от Солнца, если речь идет о солнечной системе). Согласно таблице, опубликованной CNRS там-то и тогда-то, планета Марс имеет в Солнечной системе номер 4. Множество X4(RER) пусто. Согласно теореме 999–b из курса анализа все элементы пустого множества обладают всеми наперед заданными свойствами. Следовательно, все поезда RER на планете Марс красно-синего цвета.
(Цит. по тезисам выступления на Всероссийском совещании «Математика и общество. Математическое образование на рубеже веков.» Дубна, сентябрь 2000 г.)
12. Или теорвер, или астрология
Эту остроумную апокрифическую историю, найденную в интернете, привожу практически без изменений.
В 30-х годах прошлого столетия А. Н. Колмогоров, успевший за свою жизнь оставить след практически во всех имевшихся на тот период областях математики, занимался теорией вероятностей, в которой, несмотря на молодость, уже был международным авторитетом. Но, видимо, не зря «вероятность» рифмуется с «неприятностью». Эти занятия доставляли ему массу проблем, потому что теория вероятностей казалась надзирающим товарищам явно подозрительной дисциплиной. И действительно, одно из ее базовых понятий — случайная величина, в то время как, согласно тогдашней марксистско-ленинской теории, все в мире взаимосвязано и предопределено.
Говорят, что теория вероятностей не была объявлена лженаукой из-за единственного разговора. Когда Колмогорова в очередной раз вызвали на беседу, он спросил: а если я приведу вам пример двух независимых событий, вы перемените свое мнение? Ну, приведите, сказали ему. Пожалуйста, сказал он — расположение звезд на небе в момент рождения товарища Ленина и Великая Октябрьская Социалистическая Революция.
Теория вероятностей выжила.
О ферматистах, то есть людях (часто не слишком вменяемых), пытающихся доказать знаменитую теорему Ферма (она-таки была доказана на 130 страницах в 1995 году Эндрю Уайлсом) можно говорить долго. Чего стоит хотя бы некий Виктолий Будкин, сумевший каким-то образом в 1975 году издать в Верхне-Волжском книжном издательстве книгу с характерным названием «Методика познания "истины". Доказательство великой теоремы Ферма». Хорошо помню эту тоненькую книжицу, быстро ставшую библиографической редкостью... Среди ферматистов встречалось немало колоритных личностей. Вот история об одном из них, рассказанная профессором-математиком МГУ В. А. Успенским.
Дело происходит в 1950 году или около того в Москве. Я нахожусь в одной из редакций, расположенных на Большой Калужской улице (сейчас это начало Ленинского проспекта). В редакцию входит другой посетитель и просит разрешения позвонить по телефону; в те годы вход в офисы ещё не охранялся ни охранниками, ни кодовыми замками. Посетитель живописен: худ, длинноволос и держит в руках сетчатую авоську, в которой лежит скрипка. Как мне потом расскажут знающие люди, он зарабатывал на жизнь, играя на этой скрипке на палубе речных теплоходов. На моих глазах, а также ушах, он делает два звонка. Первый звонок: «Это Московский университет? Попросите, пожалуйста, к телефону ректора. Ах, ректор занят и не может подойти? Дело в том, что я посылал на его имя ценное письмо с решением проблемы Ферма и хотел бы узнать результат. Ну хорошо, я позвоню позже». Второй звонок: «Это Академия наук? Попросите, пожалуйста, к телефону президента. Ах, президент занят и не может подойти? Дело в том, что я посылал на его имя ценное письмо с решением проблемы Ферма и хотел бы узнать результат. Ну хорошо, я позвоню позже». Позвонив, он вежливо благодарит и удаляется.
(Цит. по статье: Успенский В. А. Апология математики, или О математике как части духовной культуры // Новый Мир. 2007, №11.)
14. Рыбак рыбака видит издалека
Еще одна «ферматистская» история, описанная доцентом Новосибирского Государственного университета, математиком и заядлым рыбаком А. Д. Больботом.
Встречаются два алгебраиста. Один спрашивает другого:
— Ты что такой смурной?
— Да вот, ферматист меня достает — узнал где-то, кто его статью рецензировал, и напрямую на меня вышел.
— А у меня такая же история, — отвечает второй, — вчера кое-как отбился.
— А может быть у нас один и тот же? — высказывается предположение.
Сверились — оказалось разные.
— А давай-ка их друг на друга замкнем, организуем локальный семинар и их пригласим.
Предложение понравилось обоим, но эффекта они даже и предположить не могли...
Остались два на два. Ферматисты друг друга, естественно, еще не знают, один из них идет к доске и начинает плести всякую чушь, из которой не всякий и поймет, что речь идет о теореме Ферма — тертый уже калач, даже в названии доклада имени Ферма всуе не использует. Алгебраисты, конечно, вникать не торопятся — успеют еще поймать — за реакцией второго наблюдают. А он заметно занервничал, ерзать начал. Наконец, не выдерживает и вопрос докладчику задает, не более вразумительный, чем сам доклад. К изумлению алгебраистов, докладчик его понял и с жаром начинает что-то доказывать неожиданному оппоненту. Тот ему другой вопрос, а этот встречный — и такая тут дискуссия у них пошла, что алгебраисты сочли за благо потихонечку ретироваться. Спустя полгода или больше один из этих алгебраистов поинтересовался у другого:
— Ну как твой ферматист?
— А шут его знает, пропал куда то.
— И у меня тоже! — отвечает другой.
Существуют две группы людей, из которых одна знать не знает про фракталы, а другая считает, что существует две группы людей, из которых одна знать не знает про фракталы, а другая считает, что существует две группы людей, из которых одна знать не знает про фракталы, а другая считает, что существует две группы людей...
Следующий, весьма популярный в сети опус написан группой авторов (по-видимому, из Новосибирского академгородка) под собирательным псевдонимом «Контора братьев Дивановых».
Рецензия (НОВЫЕ КНИГИ. ПОСОБИЕ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В ВУЗЫ. М. НОГОЕДОВ. М.: Бельмес, 2001, 10 000 000 экз.)
Книга по-своему интересна, однако хотелось бы отметить ряд методических недостатков.
С первой же страницы вызывают недоумение выражения типа «ежу понятно», «тудым-сюдым колеблется», «треугольник ABC с финтифлюшкой на конце» вплоть до «ну его на хрен, это доказательство».
Введение новых терминов не всегда оправдано. Вместо слов «жлыга», «торчун», «одуренный», «толстопузый», о значении которых приходится догадываться лишь из контекста, разумнее было бы использовать традиционные «трапеция», «перпендикуляр», «больший либо равный двум», «выпуклый».
А оборота «плоский, как старая шлюха» (с.113, теорема Пифагора) стоило бы избежать, хотя бы из уважения к старым шлюхам.
Далее. Можно, конечно, бесконечно долго спорить о том, куда, по мнению автора, сходится функция 1/x, но рисунок на с.157 просто попадает под действие закона «О порнографии».
Ну, а пассаж в конце главы 3 вообще не лезет ни в какие ворота. Корректней было бы написать: «оставляем доказательство читателю», чем объяснять на двух страницах, что «...башка с утра раскалывается» и что «...вчера такой дряни намешали».
И, наконец, нельзя согласиться с заключительной фразой (с.315), что, дескать, «место всех этих придурков в тюрьме, а не в ВУЗе».
В целом же книга интересная, талантливо написана и будет безусловно полезна для всех тех, кто заканчивает школу и вступает на нелёгкий и увлекательный путь половой зрелости.
Лучшие «отмазки» по поводу невыполненного домашнего задания по математике:
Я случайно разделил на ноль и все мои вычисления тут же сгорели.
Я праздновал день рождения Пифагора.
Я смог подойти к моей тетради на бесконечно малое расстояние, но так и не смог до неё дотянуться.