My-library.info
Все категории

Роберт Шох - Мистерия пирамид. Тайна Сфинкса.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Роберт Шох - Мистерия пирамид. Тайна Сфинкса.. Жанр: История издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мистерия пирамид. Тайна Сфинкса.
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
2 февраль 2019
Количество просмотров:
412
Читать онлайн
Роберт Шох - Мистерия пирамид. Тайна Сфинкса.

Роберт Шох - Мистерия пирамид. Тайна Сфинкса. краткое содержание

Роберт Шох - Мистерия пирамид. Тайна Сфинкса. - описание и краткое содержание, автор Роберт Шох, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Великие пирамиды Древнего Египта не первое тысячелетие являются одним из самых загадочных памятников цивилизации на Земле. Многие века человечество не может однозначно ответить на вопрос: кем и с какой целью были созданы эти циклопические и неимоверно сложные инженерные сооружения?Авторы этой книги, всесторонне изучив как научные теории, так и самые фантастические версии о происхождении и назначении пирамид, предлагают собственную ошеломляющую гипотезу, построенную на строгих фактах. По их мнению, эти величественные монументы — неопровержимое доказательство существования древнейшей египетской цивилизации, которая возникла и достигла расцвета на много тысячелетий раньше, чем это принято считать, и которая уходит корнями в бесконечные глубины минувшего.© 2005 by Robert М. Schoch, Ph. D., and Robert Aquinas McNally. All rights reserved including the right of reproduction in whole or in part in any form. This edition published by arrangement with Jeremy P. Tarcher, a member of Penguin Group (USA) Inc. ISBN 978-5-699-20411-3 — 544 с: ил.

Мистерия пирамид. Тайна Сфинкса. читать онлайн бесплатно

Мистерия пирамид. Тайна Сфинкса. - читать книгу онлайн бесплатно, автор Роберт Шох

Не исключено, что нечто подобное произошло и в Древнем Египте. Египтяне эпохи Среднего царства вполне могли утратить знание числа π, которым обладали их предки эпохи Древнего царства, и создать в качестве его замены принцип секед.

Гипотеза о правиле секед невольно побуждает нас выказать интригующее предположение: число я было не единственной математической константой, известной египтянам эпохи Древнего царства.


Золотое сечение

Эту константу с эпохи Возрождения принято называть принципом золотого сечения, или ф (фи), ф - это не число, которое можно вычислить арифметическим путем, а параметр, определяемый с помощью компаса и линейки. Во-первых, проведем линию, условно называемую АС. Затем разделим АС в точке В таким образом, что АС/ВС = АВ/ВС. Другими словами, отношение всей длины этой линии к большему ее отрезку точно такое же, как и отношение большего отрезка к меньшему. Оба отношения выражаются величиной ф, которая составляет 1,618033988749895... Эту иррациональную и бесконечную величину называют по-разному: золотое сечение, золотая середина, первичное сечение, Божественная пропорция. Ф можно наглядно показать с помощью геометрии квадрата. Возьмем квадрат, сторона которого равна 1, и разделим его пополам от одной противолежащей стороны до другой. У нас получатся два прямоугольника 1 х ( 1/2). Диагональ одного из этих прямоугольников плюс 1/2 и будет равна ф. Давайте обозначим эту диагональ как Wu применим в отношении ее теорему Пифагора. Теперь мы знаем отношение W к двум другим сторонам: W2 = 12 + (1 /2)2. Эту формулу можно записать и как W2 = 1,25; таким образом, W = √1.25 и ф  = √1.25  + (1 /2). Однако √1.25 можно умножить на 1 в форме √4/2, чтобы получить √4x1.25 / 2 = √5 / 2. Теперь подставим √5/2 вместо √1.25 в уравнение ф = √1.25+ 1/2,и получим ф = (1 + √5) / 2.

Одна из самых удивительных особенностей ф заключается в том, что 1 + ф = ф2. Выполните простые алгебраические действия с этим уравнением, и вы получите (1/ф) + 1 = ф, уравнение, которое ведет к получению дополнительного ряда чисел, известного как последовательность Фибоначчи. Своим названием эта последовательность обязана имени одного из крупнейших математических гениев эпохи Средневековья - Леонардо Фибоначчи (ок 1170—1240), итальянского ученого, известного также под именем Леонардо Пизанский. Именно Фибоначчи познакомил европейцев с индийско-арабскими цифрами, которыми мы пользуемся сегодня. Он совершил длительное путешествие в Египет и внимательно изучал математические принципы и методы, встречавшиеся ему в дальних краях. Вполне возможно, что именно в Египте Фибоначчи нашел ту самую последовательность, которая сегодня носит его имя, и обнаружил ее взаимосвязь с числами пиф.

Последовательность Фибоначчи выглядит достаточно просто: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55... Каждое из этих чисел после первой 1 представляет собой сумму двух предыдущих. Весьма интригующим здесь представляется тот факт, что отношение каждого последующего числа к предыдущему является приближенным значением ф. По мере продвижения по этой последовательности степень приближения становится все более и более точной. Так, отношение 1 к 1 равно 1, 3 к 2 - 1,5, 5кЗ - 1,666, и к тому моменту, когда вы достигнете отношения 55 к 34, вы получите величину 1,61747, что очень близко к точному значению ф = 1,6180339.

На протяжении последовательности Фибоначчи значение ф демонстрирует немало любопытных естественных закономерностей, например, кривая роста раковины моллюска наутилус (кораблик), схема размещения семян в цветках подсолнечника или астры, и даже структура спиральной галактики. Платон в своем диалоге «Тимей» - том самом, в котором упоминается об Атлантиде, - говорит, что золотое сечение представляет собой одно из наиболее универсальных математических отношений и что оно является своего рода ключом к физике космоса в целом. Кроме того, золотое сечение является важным композиционным элементом на картинах многих живописцев эпохи Возрождения, включая произведения Фра Филиппо Липпи (1406—1469), Леонардо да Винчи (1452—1519) и Рафаэля (1483—1520). Оно образует композиционную основу для систему координат, которой пользовался Ле Корбюзье (1887—1965), великий швейцарский математик, спроектировавший, помимо прочих построек, здание штаб-квартиры ООН в Нью-Йорке.

Афиняне классической эпохи использовали золотое сечение при возведении Акрополя, а сложные математические расчеты, стоящие за ним, связаны с именами великих греческих геометров Пифагора (ок. 569—475 гг. до н.э.) и Эвклида (ок 325—265 гг. до н.э.). Однако Великая пирамида и другие монументы свидетельствуют о том, что египтяне Древнего царства знали о существовании золотого сечения (ф) и его связи с числом тс более чем за 2 тысячелетия до великих греков.

Возможно, первым автором, высказавшим это предположение, был Рене Шваллер де Любич (1887—1961), эльзасский математик и философ, чьи наблюдения за характером водной эрозии на основании Большого Сфинкса оказались едва ли не главной причиной моего первого приезда в Гизу. Рассмотрим, к примеру, рельеф, который изучал Шваллер и который находится на восточной стороне храма в Луксоре. Этот рельеф привлек его внимание куда больше, чем любое другое сооружение в Древнем Египте. На рельефе изображена группа жрецов, вносящих солнечную ладью царя через ворота храма в Карнаке. Согласно расчетам Шваллера, если ширину ворот от одной стенки до другой с внешней стороны принять за 1, то внешняя высота ворот будет равна 2; в то же время если ширину ворот от одной стенки до другой с внутренней стороны принять равной 1, то высота ворот с внутренней стороны будет составлять ф2 х 1,2 =3,1416.

Таким образом, здесь перед нами - значение числа тс; это свидетельствует о том, что древние египтяне знали не только числа тс и ф, но и соотношение между ними, выражающееся формулой тс = ф2 х 6/5. Возьмем два приближенных значения ф из последовательности Фибоначчи и подставим их в это уравнение; у нас получится достаточно хорошее приближенное значение тс (приближенные значения я, как и ф, становятся все более точными по мере продвижения последовательности Фибоначчи к большим числам). Это дает нам по меньшей мере одно приближение л, несомненно использованное в Великой пирамиде, а именно (34/21) х (55/34) х (6/5) = (55/21) х (6/5) = ( 11 /21) х 6 = 66/21 = 22/7.

По мнению самого Шваллера, его открытие в большей мере, чем на чем-либо еще, основано на знании ф в эпоху Древнего царства. На многих изображениях египетских фараонов владыки предстают в курьезном одеянии - треугольной набедренной повязке. Шваллер де Любич провел измерения углов такой повязки на множестве изображений и неизменно получал одни и те же величины: ф и √ф. Итак, это - отнюдь не символическое совпадение, что подобная набедренная повязка выбрана для визуального показа ф[90] . Учитывая важность ф для выражения пропорций всевозможных реалий материального мира, от спирали раковины моллюска наутилуса до спиральной галактики, это числовое отношение считалось семенем силы Вселенной. Другими словами, ф имело фаллический характер.

Шваллер также утверждает, что ф присутствует в сечении Великой пирамиды, представляющем собой треугольник, образованный высотой пирамиды, половиной его основания и апофемой. Если половина основания равна 1, то апофема -это ф, а высота - √/ф. Таким образом, поперечное сечение Великой пирамиды выражает те же самые углы, что и набедренная повязка фараона, и отражает тот же маскулинный (мужской) принцип семени, творящего все формы и образы.

Ливио Катулло Стеччини, ученый-классик, одержимый идеей измерений и мер, с которым мы встречались в Главе 7, выдвинул дополнительный аргумент в пользу присутствия принципа ф в Великой пирамиде и его связи с числом к. Большинство исследователей Великой пирамиды утверждали, что это грандиозное сооружение было спланировано так, что его основание представляет собой идеальный квадрат, а стороны поднимаются к вершине пирамиды под безукоризненно одинаковыми углами. Стеччини взял под сомнение эти устоявшиеся постулаты. Он считал, что исходной точкой для построения пирамиды могло быть основание длиной в 440 локтей при высоте 280 локтей, но затем, в процессе строительства, эти исходные пропорции могли быть изменены. Длина каждой из сторон основания была чуть уменьшена и в итоге составила 439,5 локтя, а периметр Великой пирамиды предположительно должен был составлять 1758 локтей (921,453 м). Как вы, надеюсь, помните, в Главе 7 сказано, что, по утверждению Стеччини, эта цифра эквивалентна 0,5 минуты широты на экваторе. Древние египтяне высчитали, что эта величина составляет 3516 локтей, что в пересчете равно 1842,905 м. Это чрезвычайно близко к современным расчетам - 1842,925 м.

Но Стеччини пошел еще дальше. Обмеры Коула, проведенные в 1925 году, показали, что Великая пирамида не является в плане идеальным квадратом. Большинство египтологов приписывают эти неодинаковые размеры сторон случайности или неточности. В конце концов, крайне трудно сложить столь грандиозную груду камней с точностью до одного или двух локтей. Однако Стеччини доказывает, что размеры Великой пирамиды специально отклоняются от идеального квадрата и что причиной этих различий как раз и являются числа π и ф.


Роберт Шох читать все книги автора по порядку

Роберт Шох - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мистерия пирамид. Тайна Сфинкса. отзывы

Отзывы читателей о книге Мистерия пирамид. Тайна Сфинкса., автор: Роберт Шох. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.