Ознакомительная версия.
Наряду с этим способом наименований иногда пользуются и другим: гомолог бензола рассматривают как производное углеводорода жирного ряда, в котором атом водорода замещен остатком бензола С6Н5, который называется фенилом. Тогда углеводород С6Н5-СН3 по этому способу называется фенилметаном.
Некоторые гомологи бензола, широко применяющиеся в практике, имеют прочно укоренившиеся эмпирические названия. Так, например, метилбензол С6Н5-СН3 называют толуолом; диметилбензол – С6Н4(СН3)2 – ксилолом и т. д.
Остатки ароматических углеводородов, их радикалы, носят общее название арилов по аналогии с названием остатков жирных углеводородов – алкилов.
Изомерия. В ряду ароматических соединений очень часто приходится встречаться с изомерией, зависящей от расположения двух и более заместителей относительно друг друга. Так, в молекуле двузаме-щенного бензола два заместителя могут находиться в различных положениях, давая три изомера:
1) заместители могут находиться у соседних атомов углерода: изомеры с таким расположением называются ортоизомерами;
2) заместители могут находиться у атомов углерода, разделенных еще одним атомом углерода, – метаизомеры;
3) заместители могут находиться у атомов углерода, разделенных двумя атомами углерода, т. е. расположенных по диагонали, – параизомеры. Для трехзамещенных бензола также возможны три различных порядка расположения заместителей:
1) все три заместителя могут быть расположены у трех соседних атомов углерода; изомер с таким расположением заместителей называется рядовым или вицинальным;
2) три заместителя могут быть расположены таким образом, что два из них находятся у соседних атомов углерода, а третий – в метаположении по отношению к одному из них; такой изомер называется несимметричным;
3) все три заместителя могут быть расположены в мета-положении один к одному; такое расположение называется симметричным.
Помимо рассмотренной изомерии, зависящей от расположения заместителей в кольце, в группе ароматических углеводородов могут быть и другие виды изомерии. Например, радикалы, замещающие атомы водорода в бензольном кольце, могут иметь прямую цепь углеродных атомов и цепь, в той или иной степени разветвленную. Далее, изомерия может зависеть от числа радикалов, содержащих для разных изомеров в общей сумме с остатком бензола одинаковое количество атомов углерода и водорода.
31. Получение ароматических углеводородов. Природные источники
Сухая перегонка каменного угля.
Ароматические углеводороды получаются главным образом при сухой перегонке каменного угля. При нагревании каменного угля в ретортах или коксовальных печах без доступа воздуха при 1000–1300 °C происходит разложение органических веществ каменного угля с образованием твердых, жидких и газообразных продуктов.
Твердый продукт сухой перегонки – кокс – представляет собой пористую массу, состоящую из углерода с примесью золы. Кокс вырабатывается в огромных количествах и потребляется главным образом металлургической промышленностью в качестве восстановителя при получении металлов (в первую очередь железа) из руд.
Жидкие продукты сухой перегонки – это черная вязкая смола (каменноугольный деготь), и водный слой, содержащий аммиак, – аммиачная вода. Каменноугольного дегтя получается в среднем 3 % от массы исходного каменного угля. Аммиачная вода – один из важных источников получения аммиака. Газообразные продукты сухой перегонки каменного угля носят название коксового газа. Коксовый газ имеет различный состав в зависимости от сорта угля, режима коксования и т. д. Коксовый газ, получаемый в коксовальных батареях, пропускают через ряд поглотителей, улавливающих смолы, аммиак и пары легкого масла. Легкое масло, получаемое путем конденсации из коксового газа, содержит 60 % бензола, толуол и другие углеводороды. Большая часть бензола (до 90 %) получается именно этим способом и лишь немного – путем фракционирования каменноугольного дегтя.
Переработка каменноугольного дегтя. Каменноугольный деготь имеет вид черной смолистой массы с характерным запахом. В настоящее время из каменноугольного дегтя выделено свыше 120 различных продуктов. Среди них ароматические углеводороды, а также ароматические кислородсодержащие вещества кислого характера (фенолы), азотосодержащие вещества основного характера (пиридин, хинолин), вещества, содержащие серу (тиофен), и др.
Каменноугольный деготь подвергают фракционной перегонке, в результате которой получают несколько фракций.
Легкое масло содержит бензол, толуол, ксилолы и некоторые другие углеводороды.
Среднее, или карболовое, масло содержит ряд фенолов.
Тяжелое, или креозотовое, масло: из углеводородов в тяжелом масле содержится нафталин.
Получение углеводородов из нефти
Нефть – один из главных источников ароматических углеводородов. Большинство видов нефти содержит лишь очень небольшое количество углеводородов ароматического ряда. Из отечественной нефти богата ароматическими углеводородами нефть Уральского (Пермского) месторождения. Нефть «Второго Баку» содержит до 60 % ароматических углеводородов.
В связи с дефицитностью ароматических углеводородов теперь пользуются «ароматизацией нефти»: нефтяные продукты нагревают при температуре около 700 °C, в результате чего из продуктов разложения нефти удается получить 15–18 % ароматических углеводородов.
32. Синтез, физические и химические свойства ароматических углеводородов
1. Синтез из ароматических углеводородов и гало-генопроизводных жирного ряда в присутствии катализаторов (синтез Фриделя—Крафтса).
2. Синтез из солей ароматических кислот.
При нагревании сухих солей ароматических кислот с натронной известью происходит разложение солей с образованием углеводородов. Этот способ аналогичен получению углеводородов жирного ряда.
3. Синтез из ацетилена. Эта реакция представляет интерес как пример синтеза бензола из углеводородов жирного ряда.
При пропускании ацетилена через нагретый катализатор (при 500 °C) происходит разрыв тройных связей ацетилена и полимеризация трех его молекул в одну молекулу бензола.
Физические свойства
Ароматические углеводороды представляют собой жидкости или твердые тела с характерным запахом. Углеводороды, имеющие в молекулах не более одного бензольного кольца, легче воды. В воде ароматические углеводороды растворимы мало.
Для ИК-спектров ароматических углеводородов характерны в первую очередь три области:
1) около 3000 см-1, обусловленная валентными колебаниями С—Н;
2) область 1600–1500 см-1, связанная со скелетными колебаниями ароматических углерод-углеродных связей и значительно варьирующая по положению пиков в зависимости от строения;
3) область ниже 900 см-1, относящаяся к деформационным колебаниям С—Н ароматического кольца.
Химические свойства
Важнейшими общими химическими свойствами ароматических углеводородов являются их склонность к реакциям замещения и большая прочность бензольного ядра.
Гомологи бензола имеют в своей молекуле бензольное ядро и боковую цепь, например в углеводороде С6Н5-С2Н5 группа С6Н5 – бензольное ядро, а С2Н5 – боковая цепь. Свойства бензольного ядра в молекулах гомологов бензола приближаются к свойствам самого бензола. Свойства боковых цепей, являющихся остатками углеводородов жирного ряда, приближаются к свойствам жирных углеводородов.
Можно разделить реакции бензольных углеводородов на четыре группы.
33. Правила ориентации в бензольном ядре
При изучении реакций замещения в бензольном ядре было обнаружено, что если в бензольном ядре уже содержится какая-либо замещающая группа, то вторая группа вступает в определенное положение в зависимости от характера первого заместителя. Таким образом, каждый заместитель в бензольном ядре обладает определенным направляющим, или ориентирующим, действием.
На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. электрофильная или нуклеофильная природа действующего реагента. Подавляющее большинство наиболее важных реакций замещения в бензольном кольце – это реакции электрофильного замещения (замена атома водорода, отщепляющегося в виде протона, положительно заряженной частицей) – реакции галогенирования, сульфирования, нитрования и др.
Все заместители по характеру своего направляющего действия делятся на две группы.
1. Заместители первого рода в реакциях электро-фильного замещения направляют последующие вводимые группы в орто– и параположение.
К заместителям этого рода относятся, например, следующие группы, расположенные в порядке убывания своей направляющей силы: —NH2, —OH, – CH3.
Ознакомительная версия.