My-library.info
Все категории

Чарльз Сейфе - Ноль: биография опасной идеи

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Чарльз Сейфе - Ноль: биография опасной идеи. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Ноль: биография опасной идеи
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
257
Читать онлайн
Чарльз Сейфе - Ноль: биография опасной идеи

Чарльз Сейфе - Ноль: биография опасной идеи краткое содержание

Чарльз Сейфе - Ноль: биография опасной идеи - описание и краткое содержание, автор Чарльз Сейфе, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Эта книга — история цифры 0, одного из самых необычных изобретений человечества. Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна, пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» — обо всем этом в книге «Ноль: биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Ноль: биография опасной идеи читать онлайн бесплатно

Ноль: биография опасной идеи - читать книгу онлайн бесплатно, автор Чарльз Сейфе

Никто не знает, не ознакомился ли во время визита в Англию тридцатитрехлетний Лейбниц с неопубликованной работой Ньютона. Однако между 1673 и 1676 годами, когда Лейбниц в следующий раз посетил Лондон, он тоже создал анализ, хотя и в несколько иной форме.

Глядя назад, можно заключить, что Лейбниц сформулировал свою версию независимо от Ньютона, хотя споры по этому поводу не прекращаются. Двое ученых в 1670-е годы вели переписку, так что очень трудно определить, как они влияли друг на друга. Впрочем, хотя две теории дают одинаковые ответы, условные обозначения — и философия — очень разнятся.

Ньютон не любил бесконечно малые величины, маленькие о в его флюксиях иногда вели себя как ноль, а иногда — как отличные от ноля числа. В определенном смысле эти бесконечно малые были бесконечно малы, меньше любого положительного числа, но все же каким-то образом больше ноля. Для математиков того времени это была смешная концепция.

Ньютона смущали бесконечно малые в его уравнениях, и он заметал их под ковер. Маленькие о в его уравнениях были всего лишь посредниками, костылями, которые чудесным образом исчезали к концу выкладок. С другой стороны, Лейбниц наслаждался бесконечно малыми. Там, где Ньютон писал о x́, Лейбниц писал dx — бесконечно малый кусочек x. Бесконечно малые выжили без изменений во всех расчетах Лейбница; действительно, производная от y по x было не свободным от бесконечно малых отношением флюксий ý / x́, а отношением бесконечно малых dy / dx.

В исчислении Лейбница с этими dy и dx можно было обращаться как с обычными числами, поэтому современные математики и физики обычно используют обозначения Лейбница, а не Ньютона. Дифференциальное исчисление Лейбница обладало той же силой, что и метод Ньютона, а благодаря обозначениям даже несколько большей. Тем не менее под всеми математическими ухищрениями дифференциалы Лейбница имели ту же запретную природу 0 / 0, которая вредила флюксиям Ньютона. До тех пор, пока сохранялся этот недостаток, исчисление продолжало основываться скорее на вере, чем на логике. (На самом деле вера очень сильно влияла на Лейбница, когда он создавал новые математические методы, например двоичную систему счисления. Любое число могло быть записано как ряд нолей и единиц. Для Лейбница это было созданием ex nihilo, созданием Вселенной из ничего, большего, чем Бог / 1 и пустоты / 0. Лейбниц даже пытался убедить иезуитов использовать это знание для обращения китайцев в христианство.)

Должно было пройти много лет, прежде чем математики начали освобождать математический анализ от его мистических обоснований, потому что математический мир был занят спорами по поводу того, кто его изобрел.

Едва ли можно сомневаться в том, что первым — в 1660-х годах — идею высказал Ньютон, однако он не публиковал свою работу в течение двадцати лет. Ньютон был магом, теологом, алхимиком, а не только ученым (например, он использовал библейские тексты для заключения о том, что второе пришествие Христа случится примерно в 2060 году), и многие его взгляды носили еретический характер. В результате он был склонен к хранению секретов и неохотно публиковал свои работы. Тем временем, пока Ньютон держал свое открытие в тайне, Лейбниц разработал собственную теорию. Двое ученых тут же обвинили друг друга в плагиате, и английское математическое сообщество, поддерживавшее Ньютона, отвернулось от континентальных математиков, поддерживавших Лейбница. В результате англичане держались за ньютоновские флюксии и не принимали более удобного обозначения дифференциалов Лейбница — назло себе. Когда дело дошло до развития математического анализа, английские математики сильно отстали от континентальных.

Именно француз, а не англичанин был первым, кто запустил зубы в таинственные ноли и бесконечность, пронизывавшие математический анализ; теперь математики узнают о правиле Лопиталя, начиная изучать дифференциальное исчисление. Как ни странно, не Лопиталь создал правило, которое теперь носит его имя.

Родившийся в 1661 году Гийом-Франсуа-Антуан де Лопиталь был маркизом и очень богатым человеком. Он рано начал интересоваться математикой, и хотя некоторое время прослужил в армии, сделавшись капитаном кавалерии, снова вернулся к своей первой любви — математике.

Лопиталь нанял себе лучшего учителя, какого только можно было нанять за деньги, — Иоганна Бернулли, швейцарского математика, одного из первых, кто освоил лейбницевское исчисление бесконечно малых. В 1692 году Бернулли обучил Лопиталя анализу. Лопиталь так увлекся новым математическим методом, что побудил Бернулли за деньги сообщить ему обо всех новых математических открытиях, чтобы маркиз мог делать с ними, что пожелает. В результате был создан учебник. В 1696 году Лопиталь издал «Анализ бесконечно малых». Эта книга стала первым учебником математического анализа и познакомила с лейбницевской версией дифференциального исчисления большую часть Европы. Лопиталь не только изложил основы анализа, но и добавил некоторые важные новые результаты. Самое знаменитое новшество стало известно как правило Лопиталя.

Правило Лопиталя нанесло первый удар по тревожащим математиков выражениям 0 / 0, постоянно встречавшимся в математическом анализе. Правило дало способ определять истинную величину математических функций, стремящихся к 0 / 0 в данной точке. Правило Лопиталя гласит, что значение отношения функций равно производной верхнего выражения, деленному на производную нижнего выражения. Например, рассмотрим выражение x / (sin x), когда x = 0. При x = 0 sin x = 0, так что выражение принимает вид 0 / 0. Используя правило Лопиталя, мы увидим, что выражение стремится к 1 / (cos x), поскольку производная x — это 1, а производная sin x — это cos x. При x = 0 cos x равен 1, так что все выражение равно 1 / 1 = 1. Ловкие манипуляции могли также позволить с использованием правила Лопиталя разрешать и другие странные вопросы: / ∞, 0 / 0, 0 / ∞, ∞0.

Все эти выражения, но особенно 0 / 0, могли бы принимать любые значения, какие только пожелаете, в зависимости от того, какие функции вы поставите в числитель и в знаменатель. Поэтому-то 0 / 0 и назвали неопределенностью. Это теперь не было полной тайной, математики могли получить некоторую информацию о 0 / 0, если подходили к делу очень осторожно. Ноль больше не был врагом, которого следовало избегать, это была подлежащая изучению загадка.

Вскоре после смерти Лопиталя в 1704 году Бернулли начал утверждать, что тот украл его работу. В то время математическое сообщество отвергло претензии Бернулли: не только Лопиталь проявил себя как умелый математик; Иоганн Бернулли имел запятнанную репутацию. Он уже раньше пытался приписать себе заслугу другого математического доказательства (другим математиком был его брат, Якоб Бернулли). В данном случае, однако, претензии Иоган на Бернулли были обоснованны: это подтверждалось его перепиской с Лопиталем. К огорчению Бернулли, название «правило Лопиталя» прижилось.

Это правило было чрезвычайно важным для разрешения трудностей с 0 / 0, однако лежащая в их основе проблема оставалась. Новая математика Ньютона и Лейбница зависит от деления на ноль и от чисел, которые чудесным образом исчезают при возведении в квадрат. С помощью правила Лопиталя 0 / 0 исследуется инструментами, изначально опирающимися на 0 / 0. Эти аргументы — замкнутый круг. Физики и математики по всему миру начали использовать математический анализ для изучения природы, а концепцию абсолютного пространства — для объяснения движения — под крики протеста со стороны Церкви.

В 1734 году, через 7 лет после смерти Ньютона, ирландский епископ Джордж Беркли написал книгу под названием «Аналитик, или рассуждение, адресованное неверующему математику». (Под неверующим математиком, вероятнее всего, подразумевался Эдмунд Галлей, всегда поддерживавший Ньютона.) В «Аналитике» Беркли обрушился на грязные трюки с нолем Ньютона и Лейбница.

Называя бесконечно малые «призраками исчезнувших величин», Беркли показал, что безнаказанное исчезновение этих бесконечно малых ведет к противоречию. Он заключал: «Разве математики, столь чувствительные в вопросах религии, строго скрупулезны в своей собственной науке?»

Хотя математики того времени язвили по поводу логики Беркли, славный епископ был совершенно прав. В те дни исчисление было очень отлично от других областей математики. Каждая теорема в геометрии строго доказывалась. Позаимствовав несколько правил у Евклида и тщательно, шаг за шагом продвигаясь вперед, математик мог доказать, что углы треугольника в сумме равны 180 градусам, или любой другой геометрический факт. С другой стороны, анализ основывался на вере.


Чарльз Сейфе читать все книги автора по порядку

Чарльз Сейфе - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Ноль: биография опасной идеи отзывы

Отзывы читателей о книге Ноль: биография опасной идеи, автор: Чарльз Сейфе. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.