186
Есть и другое ограничение такой визуализации открытия Эйнштейна — она не передаёт искажение времени. Это важно из-за того, что общая теория относительности показывает: для обычных объектов наподобие Солнца (в отличие от крайних случаев типа чёрных дыр) искажение времени гораздо больше выражено, чем искажение пространства. Искажения времени гораздо труднее передать графически, и не менее трудно представить, как искажение времени влияет на искривлённые пространственные траектории, такие как эллиптическая орбита Земли при вращении вокруг Солнца; вот почему на рис. 3.10 (и практически на каждой иллюстрации, которую мне приходилось видеть, пытающейся графически передать результаты общей теории относительности) принимается во внимание искривление только пространства. Но не следует забывать, что в большинстве астрофизических ситуаций доминирует искажение времени.
В 1974 г. Рассел Халс и Джозеф Тейлор открыли двойную систему пульсаров — два пульсара (быстро вращающиеся нейтронные звёзды), обращающиеся друг вокруг друга. Поскольку пульсары движутся очень быстро и очень близко друг к другу, то общая теория относительности Эйнштейна предсказывает, что они испускают сильное гравитационное излучение. Хотя очень проблематично обнаружить это излучение непосредственно, общая теория относительности показывает, что излучение должно проявляться и косвенно: излучение энергии должно приводить к постепенному уменьшению периода орбитального движения пульсаров. Пульсары непрерывно наблюдались с момента их открытия, и было обнаружено, что их орбитальный период действительно уменьшился, и это уменьшение согласуется с предсказаниями общей теории относительности с точностью до одной тысячной. Таким образом, это служит веским свидетельством в пользу существования гравитационного излучения даже без его прямого обнаружения. За это открытие Халс и Тейлор удостоились Нобелевской премии по физике за 1993 г.
Однако см. примечание {187}.
Поэтому с точки зрения энергетики космические лучи дают естественный ускоритель частиц, гораздо более мощный, чем любой из имеющихся у нас в настоящее время или который мы сможем построит в обозримом будущем. Недостаток этого естественного ускорителя состоит в том, что хотя частицы космических лучей обладают чрезвычайно высокими энергиями, но мы не можем управлять, что с чем сталкивать — когда дело доходит до столкновений космических частиц, мы оказываемся пассивными наблюдателями. Более того, доля космических частиц с заданной энергией быстро падает по мере повышения энергии частиц. Хотя около 10 млрд частиц космических лучей с энергией, эквивалентной массе протона (что составляет примерно одну тысячную от расчётной мощности Большого адронного коллайдера) ежесекундно падает на каждый квадратный километр поверхности Земли (и несколько из них ежесекундно проходят через ваше тело), но только одна из самых энергетических частиц (с энергией порядка 100 млрд масс протона) попадает в заданный квадратный километр поверхности Земли за целое столетие. Наконец, в ускорителях можно сталкивать частицы, летящие в противоположных направлениях, что повышает энергию центра масс системы частиц. Частицы же космических лучей сталкиваются, напротив, с относительно медленно движущимися частицами атмосферы. Тем не менее эти недостатки не являются непреодолимыми. За несколько десятилетий учёные довольно много узнали из изучения данных по более обильным космическим лучам с более низкой энергией, а для борьбы с малочисленностью высокоэнергетических столкновений экспериментаторы построили гигантские массивы детекторов, чтобы поймать как можно больше частиц.
Подготовленный читатель заметит, что сохранение энергии в теории с динамическим пространством-временем является очень тонким вопросом. Конечно, тензор напряжений от всех источников для уравнений Эйнштейна ковариантно сохраняется. Но отсюда не обязательно следует глобальный закон сохранения энергии. И на то есть причина. Тензор напряжений не учитывает гравитационной энергии — это общеизвестная трудность общей теории относительности. На достаточно коротких расстояниях и за достаточно короткий промежуток времени (таких как в экспериментах с ускорителями) энергия сохраняется локально, но утверждения относительно глобального сохранения должны делаться с большей осторожностью.
Это верно для простейших инфляционных моделей. Исследователи обнаружили, что в более сложных реализациях инфляции рождение гравитационных волн может подавляться.
Перспективным кандидатом на роль тёмной материи должна быть стабильная или очень долго живущая частица, которая не распадается на другие частицы. Ожидается, что это верно для легчайших из суперсимметричных партнёров частиц, а потому корректнее будет сказать, что легчайшие зино, хиггсино и фотино являются подходящими кандидатами на роль тёмной материи.
Не так давно исследовательская группа, работающая над совместным итальяно-китайским проектом под названием DAMA (Dark Matter Experiment — эксперимент по обнаружению тёмной материи) в Лаборатории Гран Cacco в Италии, сделала захватывающее дух сообщение, что ими впервые обнаружена тёмная материя. Однако до сих пор ни одна другая группа не смогла проверить их утверждение. На самом деле, в рамках другого проекта под названием CDMS (Cryogenic Dark Matter Search — криогенный поиск тёмной материи), осуществляющегося в Стэнфорде с участием американских и российских учёных, уже накоплены данные, которые, как полагают многие, опровергнут результаты DAMA с высокой степенью достоверности. Помимо этих, запущено или готовится и множество других проектов, направленных на поиск тёмной материи. О некоторых из них можно прочесть на http://hepwww.rl.ac.uk/ukdmc/dark_matter/other_searches.html.
В этом утверждении игнорируются подходы со скрытыми переменными, такие как подход Бома. Но даже в рамках таких подходов нам потребуется телепортировать квантовое состояние объекта (его волновую функцию), для чего недостаточно измерения ряда параметров объекта, таких как его положение и скорость.
В исследовательскую группу Цайлингера также входили Дик Баумистер, Джан-Ви Пан, Клаус Маттле, Манфред Эйбл и Харалд Вайнфуртер, а в группу Де Мартини — С. Джиакомини, Г. Милани, Ф. Сциаррино и Е. Ломбарди.
Приведём выкладки для читателя, знакомого с формализмом квантовой механики. Пусть начальное состояние моего фотона в Нью-Йорке описывается функцией
где и — два поляризационных состояния фотона, про которые мы будем предполагать, что они нормированные, но коэффициенты перед ними произвольны. Моя цель — предоставить Николасу информацию, достаточную для того, чтобы он смог привести свой фотон в то же самое квантовое состояние. С этой целью мы с Николасом для начала обзаводимся парой сцепленных фотонов в состоянии, скажем,
Таким образом, начальное состояние трёхфотонной системы описывается функцией
Проведя совместное измерение Белла подсистемы фотонов 1 и 2, я перевожу эту подсистему в одно из четырёх состояний:
Теперь перепишем начальное состояние трёхфотонной системы в терминах собственных состояний подсистемы фотонов 1 и 2:
Таким образом, выполнив измерение, я переведу систему в одно из этих четырёх состояний. После того как я сообщу Николасу (обычными средствами), какое состояние я обнаружил, он будет знать, что сделать с фотоном 3, чтобы воспроизвести начальное состояние фотона 1. Например, если я обнаружу состояние , то Николасу не потребуется ничего делать, поскольку в этом случае фотон 3 уже будет находиться в начальном состоянии фотона 1. Если же я получу другой результат, то Николасу придётся осуществить подходящее вращение (диктуемое конкретным результатом измерения), чтобы привести фотон 3 в желаемое состояние.
В действительности, математически подготовленный читатель заметит, что нетрудно доказать так называемую теорему о невозможности клонирования квантовых состояний. Предположим, что у нас есть унитарный оператор клонирования U, «удваивающий» любое квантовое состояние системы
Тогда результатом применения U к будет , а не дублированное состояние . Это противоречие показывает, что не существует такого оператора клонирования. (Впервые это было показано Вутерсом и Цуреком в начале 1980-х гг.)