My-library.info
Все категории

Ричард Фейнман - 8a. Квантовая механика I

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 8a. Квантовая механика I. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
8a. Квантовая механика I
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
166
Читать онлайн
Ричард Фейнман - 8a. Квантовая механика I

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

Ричард Фейнман - 8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

8a. Квантовая механика I читать онлайн бесплатно

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман

А взяв сумму (7.2) и (7.3), увидим

Если за базисные состояния взять |I> и |II>, то гамильтонова матрица очень проста:

Заметьте, что каждое из уравнений (7.8) и (7.9) выглядит очень похоже на то, что получалось в гл. 6, § 6, для уравнения си­стемы с одним состоянием. Они дают простую экспоненциальную зависимость от времени, отвечающую определенной энергии.

С ростом времени амплитуды пребывания в каждом из состоя­ний ведут себя независимо.

Найденные нами раньше стационарные состояния |yI> и |yII> тоже являются, конечно, решениями уравнений (7.8) и (7.9). У состояния |yI> (для которого С1=-С2)

А у состояния |yII> (для которого С1=С2)

Пусть мы теперь умножили (7.10) на вектор состояния |/>; тогда получится

Вспомним, однако, что |I><I|=1; значит, это одно и то же, что сказать

Иначе говоря, вектор состояния стационарного состояния |yI> не отличается от вектора состояния базисного состояния |I> ничем, кроме экспоненциального множителя, связанного с энергией состояния. И действительно, при t=0

|yI>=|I>;

физическая конфигурация у состояния )/> та же самая, что и у стационарного состояния с энергией Е0+А. Точно так же для второго стационарного состояния получается

Состояние |II>— это просто стационарное состояние с энер­гией Е0 при t=0. Стало быть, оба наших новых базисных состояния |I> и |II> физически имеют вид состояний с опреде­ленной энергией, но с изъятым экспоненциальным временным множителем, так что они могут быть приняты за базисные со­стояния, не зависящие от времени. (В дальнейшем нам будет удобно не отличать стационарные состояния |yI> и |yII> от их базисных состояний |I> и |II>, ведь различаются они только очевидными временными множителями.)

Подведем итог. Векторы состояний |I> и |II> — это пара базисных векторов, приспособленных для описания состояний молекулы аммиака с определенной энергией. Они связаны с нашими исходными базисными векторами формулами

Амплитуды пребывания в |I> и |II> связаны с СС2форму­лами

Всякое состояние может быть представлено линейной комби­нацией |1> и |2>(с коэффициентами СС2) или линейной ком­бинацией базисных состояний с определенной энергией |I> и |II> (с коэффициентами СIи СII). Итак,

|Ф>=|1>С1+|2>С2, или

|Ф>=|I>СI+|II>СII.

Вторая формула дает нам амплитуды обнаружить состоя­ние |Ф> в состоянии с энергией ЕI0 или в состоянии с энергией ЕII0-А.

§ 2. Молекула в статическом электрическом поле

Если молекула аммиака находится в любом из двух состоя­ний определенной энергии, а мы приложим к ней возмущение с частотой w, такой, что hw= EI-ЕП=2А, то система может перейти из нижнего состояния в верхнее. Или она может перейти из верхнего в нижнее и испустить фотон. Но для возбуждения таких переходов у вас должна быть физическая связь с состоя­ниями — возможность возмущать систему. Должен существо­вать какой-то внешний механизм влияния на состояния, нечто вроде электрического или магнитного поля. В нашем частном случае эти состояния чувствительны к электрическому полю. На очереди, стало быть, у нас теперь проблема поведения мо­лекулы аммиака во внешнем электрическом поле.

Для разбора этого поведения вернемся опять к перво­начальной базисной системе |1> и |2> вместо |I> и |II>. Пред­положим, что имеется электрическое поле, направленное по­перек плоскости атомов водорода. Пренебрежем на мгновение возможностью переброса атома азота вверх или вниз и зададим вопрос: верно ли, что энергия, этой молекулы в обоих положе­ниях атома азота будет одинаковой? Вообще говоря, нет. Элект­роны стремятся к тому, чтобы находиться ближе к ядру азота, чем к ядрам водорода, так что водороды оказываются слегка положительно заряженными. Насколько — это зависит от деталей расположения электронов. Каково это распределение, точно представить очень трудно, но, во всяком случае, окон­чательный результат состоит в том, что у молекулы аммиака есть электрический дипольный момент, как показано на фиг.7.1. С его помощью можно продолжить дальнейший анализ, не ин­тересуясь деталями направлений или величин смещений за­рядов. Впрочем, чтобы наши обозначения не отличались от общепринятых, предположим, что электрический дипольный момент равен m и направлен от атома азота поперек плоскости атомов водорода.

Далее, когда азот перепрыгивает с одной стороны на дру­гую, то центр масс не перемещается, а электрический дипольный момент переворачивается. В результате энергия в электрическом поле x будет зависеть от ориентации молекулы. При сделанном только что допущении потенциальная энергия бу­дет выше тогда, когда атом азота будет удален от плоскости водородов в направлении поля, и ниже, когда он удален в обратную сторону; промежуток между обеими энергиями будет равен 2mx.

До этого места мы вынуждены были делать предположения о том, чему равны ЕА, не зная, как подсчитать их. В соот­ветствии со строгой физической теорией обязана существовать возможность вычисления этих констант, если известны поло­жения и движения всех ядер и электронов. Но никто никогда не делал этого. В систему входит десяток электронов и четверка ядер, и задача чересчур сложна. Факт остается фактом: о молекуле этой никто не знает больше того, что знаем мы с вами. И все, что всякий может о ней сказать,— что в электри­ческом поле энергия двух состояний отличается и разность энергий пропорциональна электрическому полю. Коэффициент пропорциональности мы обозначили 2m, но его величина долж­на определяться экспериментально. Можно еще сказать, что молекула имеет амплитуду А перевернуться, но и она должна измеряться экспериментально. Никто не укажет нам точных теоретических значений m и А, потому что расчеты уж слишком сложны, чтобы честно их проделать.

Для молекулы аммиака в электрическом поле наше описа­ние придется изменить. Если игнорировать амплитуду пере­броса молекулы из одной конфигурации в другую, то энергии двух состояний |1> и |2>обязаны быть равны 0±mx). Сле­дуя процедуре, принятой в предыдущей главе, мы примем

Кроме того, предположим, что при интересующих нас электри­ческих полях сами поля не сказываются заметно на геометрии молекулы и, стало быть, на амплитуде того, что атом азота перепрыгнет из одного положения в другое.

Поэтому можно принять, что Н12и H21 не изменились, т. е.

H12=H21=-А. (7.15)

Теперь с этими новыми значениями Нijнадо решать гамильтоновы уравнения (6.43). Мы могли бы их решить просто, как делали это прежде, но поскольку нам не раз, видимо, представится случай решать системы с двумя состояниями, то давайте уж решим их раз и навсегда в общем случае произвольного Нij, считая только, что со временем оно не меняется.

Мы ищем общее решение пары гамильтоновых уравнений

Это линейные дифференциальные уравнения с постоянными коэффициентами. Значит, всегда можно найти решения, яв­ляющиеся экспоненциальными функциями независимой пере­менной t. Сперва отыщем решения, в которых СС2 одина­ково зависят от времени; возьмем пробные функции

Поскольку это решение отвечает состоянию с энергией E=hw,

то можно прямо написать

где Е пока неизвестна и должна быть определена так, чтобы дифференциальные уравнения (7.16) и (7.17) выполнялись. При подстановке С1и С2 из (7.18) и (7.19) в дифференци­альные уравнения (7.16) и (7.17) производные дают просто -iE/h, умноженное на С1или C2, так что слева остается попросту ЕС1или ЕС2. Сокращая общие экспоненциальные множители, получаем


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


8a. Квантовая механика I отзывы

Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.