My-library.info
Все категории

Яков Гегузин - Живой кристалл

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Яков Гегузин - Живой кристалл. Жанр: Физика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Живой кристалл
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
196
Читать онлайн
Яков Гегузин - Живой кристалл

Яков Гегузин - Живой кристалл краткое содержание

Яков Гегузин - Живой кристалл - описание и краткое содержание, автор Яков Гегузин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Живой кристалл читать онлайн бесплатно

Живой кристалл - читать книгу онлайн бесплатно, автор Яков Гегузин

После этой была построена более точная теория, учитывающая то, чем «теория № 1» пренебрегла. Назовем ее «теория № 2». Естественно ожидать, что «№ 2» — теория более точная — будет лучше согласовываться с результатами опытов, чем «теория № 1». А на поверку оказалось, что формулы «теории № 1» несравненно лучше описывают результаты измерений, чем формулы «теории № 2». Вот конкретный пример того, что скрывается за словом «лучше». Из опыта следует, что отражающая способность кристалла алюминия при одной из его ориентаций характеризуется числом 580. Из «теории № 1» следует число 818, а из «теории № 2» — 19,6.

Где же искать выход из этой странной ситуации, когда оказывается, что чем хуже, тем лучше? Ведь такой выход обязан быть! Вскоре он нашелся. Экспериментаторы заметили, что результаты измерений обычно оказываются между результатами, предсказанными каждой из теорий. Если кристалл немного исказить — продеформировать, пошлифовать поверхность, — результаты опытов приближаются к предсказаниям «теории № 1». Предсказания «теории № 2» эксперимент подтверждает лишь в редких, исключительных случаях, если опыт ставится с кристально чистым кристаллом, практически свободным от дефектов. Это свидетельство эксперимента указало путь к решению проблемы: теоретики предсказали, что модель идеального кристалла, лежащая в основе «теории

№ 2», — фикция. Реальный кристалл, видимо, состоит из маленьких областей-блоков. Блоки немного повернуты друг относительно друга и, следовательно, разделены границами. Вторичные волны, испускаемые взаимно повернутыми блоками, друг с другом практически не взаимодействуют, они «не в фазе». И поэтому, чем меньше размер блоков, тем в большей степени, с точки зрения первичного рентгеновского луча, реальный кристалл лишен строгой пространственной периодичности. А именно это молчаливо и предполагала несовершенная «теория № 1». Для согласования теории с экспериментом в то, теперь уже далекое, время физики оказались перед необходимостью умозрительно «поселить» в кристалле невидимый ими дефект — границу раздела между блоками, за которыми укрепилось название «блоки мозаики».

Многие годы «блоки мозаики» существовали не-увиденные, заявляющие о себе главным образом в опытах, в которых изучалась интенсивность рентгеновских лучей, отраженных поверхностью реального кристалла. Со временем, этак через четверть века, выяснилось, что границы между блоками представляют собой организованные ряды дислокаций. Структура этих границ зависит от того, из каких дислокаций они составлены и на какой угол друг относительно друга повернуты блоки, разделяемые границей.

В качестве примера границы между блоками мозаики обсудим простейшую границу, которая состоит из краевых дислокаций с одинаково ориентированными векторами Бюргерса. Воспользовавшись схемой такой границы, легко убедиться в том, что вектор Бюргерса b, расстояние между дислокациями h и угол между граничными блоками φ связаны соотношением


φ ≈ b / h


Если φ рад, то hb/φ ≈ 2• 10-4 см. При таком расстоянии между дислокациями они могут быть обнаружены обычной техникой химического травления!

Границу между мозаичными блоками можно промоделировать методом БНЛ: неподалеку один от другого надо выдуть два небольших скопления из пузырьков, сделать их края ровными, а затем скопления приблизить до соприкосновения. Мы это делали. Изменили угол ориентации между скоплениями и увидели много интересного в строении границы между блоками.

Мозаичные блоки и границы между ними — более чем полувековой объект исследований многих лабораторий мира. Добавим: важный объект, так как структура границы и размеры блока определяют очень многое в свойствах реальных кристаллов. А начало этих исследований восходит к тем работам, с рассказа о которых очерк начат.


ОПЫТЫ ПРОФЕССОРА ЛУКИРСКОГО

Опыты эти были поставлены в условиях, не располагавших к академическим исследованиям. 1944 г., война, большая комната Казанского университета шкафами условно разделена на несколько маленьких, в каждой из них — группа физиков Ленинградского физико-технического института, эвакуированного в Казань. В одной из импровизированных комнаток — сотрудники профессора Петра Ивановича Лукирского. Много дел связано с работой на оборону (ими и занят профессор со своими сотрудниками), и как дань естественной любознательности ищущего ученого — опыты с монокристаллами каменной соли. Эти опыты стали классикой кристаллофизики, о них и рассказ.

И по замыслу, и по осуществлению опыты, о которых я буду рассказывать, очень подобны и отличаются лишь формой изучавшегося образца. В одном из опытов длительному высокотемпературному отжигу подвергался тщательно отполированный цилиндр монокристалла каменной соли. Ось цилиндра была ориентирована параллельно ребру куба естественной огранки кристалла.

Результат опыта: до отжига цилиндр бесшумно скатывался по слегка наклоненной поверхности стекла, а после отжига скатывание сопровождалось равномерным постукиванием, как если бы на поверхности цилиндра появились ребра — четыре ребра, равно отстоящих одно от другого. Эти ребра можно и увидеть, рассматривая отожженный цилиндр в отраженном свете.

В другом опыте такому же отжигу подвергалась тщательно отполированная монокристальная сфера. Результат опыта: при рассматривании отжигавшейся сферы в отраженном свете на ее поверхности можно отчетливо увидеть фигурные блики, соответствующие выходу осей симметрии второго (эллиптический блик!), третьего (треугольный блик!) и четвертого (квадратный блик!) порядка. (Некоторая прямая в кристалле называется осью симметрии k-го порядка, если при повороте кристалла вокруг этой прямой на угол 360°/k он совмещается с самим собой.) До отжига сфера рассматривалась тщательно, этих бликов не было.

Общий результат обоих опытов можно сформулировать так: кристаллы соли, которым принудительно придана не свойственная им цилиндрическая или сферическая форма, стремятся к восстановлению формы куба — своей естественной огранки. Кристаллографы говорят «естественного габитуса». Высокая температура в этих опытах нужна лишь для того, чтобы придать активность какому-нибудь механизму переноса вещества кристалла, необходимому для формирования «естественного габитуса». Кристаллы, разумеется, предпочтут тот из механизмов, который обеспечит им возможность поскорее избавиться от принудительно заданной формы. Живой кристалл как бы не желает уступать черты первородства и борется за них.

Стремление к естественной огранке обусловлено тем, что среди несметного числа прочих мыслимых она обеспечивает наименьшую поверхностную энергию кристалла яри данном его объеме. Потому она и «естественная». К этой естественной огранке обязывает термодинамика, которая применительно к задаче об огранении кристалла выступает в форме правила Кюри — Вульфа. Первая фраза абзаца передает основную идею этого правила, мудрого и красивого своей простотой.

Правило Кюри — Вульфа может показаться противоречащим не менее мудрому утверждению геометрии, согласно которому из всех тел данного объема минимальную поверхность имеет сфера, и поэтому, если сферический монокристалл стремится к уменьшению поверхностной энергии, ему, казалось бы, не следует ограняться, так как при этом его поверхность лишь увеличится! Поверхность действительно увеличится — геометрия права! А вот энергия уменьшится, потому что при огранении исчезают участки поверхности, которые имеют большую удельную поверхностную энергию, и развиваются участки поверхности, представленные в «естественном габитусе», которые имеют малую поверхностную энергию. Проигрывается поверхность, но выигрывается энергия!

Опыты Лукирского качественно проиллюстрировали основную тенденцию, которой следуют кристаллы, самопроизвольно преобразуя собственную поверхность, и вызвали множество иных опытов, в которых этот процесс изучался точно, количественно. Ставились, например, такие опыты. Тщательно полировалась плоскость произвольного сечения кристалла. Его поверхность в равновесной огранке кристалла не представлена, и поэтому при высокой температуре зеркальная гладкость, заданная принудительно, должна будет нарушаться так, чтобы появились выгодные грани кристалла. В зависимости от ориентации плоскости произвольного сечения кристалла на ней будут появляться различные элементы так называемой «естественной шероховатости».

На стене нашей лаборатории много лет висят две фотографии поверхности зерна кристалла меди. Одну фотографию называют «лестница петергофского фонтана». На ней отчетливо видны чередующиеся светлые и темные полосы, которые в совокупности действительно напоминают лестницу, по которой сплошным потоком течет вода. Поверхность этого зерна меди была тщательно отполирована, а после отжига оно стало шероховатым, превратилось в совокупность ступеней, ребра которых направлены так же, как и ребра в ограненном монокристалле меди. А другая фотография поверхности зерна меди называется «палаточный городок». На ней видна совокупность остроконечных трехгранных выступов, которые ограничены теми же плоскостями, что и равновесный монокристалл.


Яков Гегузин читать все книги автора по порядку

Яков Гегузин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Живой кристалл отзывы

Отзывы читателей о книге Живой кристалл, автор: Яков Гегузин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.