Приведем результаты расчетов по программе СММ для вертикального удара кометы (плотностью 1 г/см3) диаметром 200 м при начальной скорости 50 км/с и каменного тела (плотностью 2,7 г/см3) диаметром 400 м при начальной скорости 17 км/с. В обоих случаях будем считать грунт плотным, скалистым. В первом случае (в дальнейшем — вариант 1) начальная кинетическая энергия равна 1,2 103 Мт ТНТ. По модели СММ фрагменты тела ударяют по поверхности со скоростью 32 км/с в пределах круга диаметром 0,7 км, энергия ударяющих о поверхность струи пара и фрагментов составляет около 500 Мт ТНТ. На расстоянии 15 км амплитуда ударной волны, по оценке СММ, составляет 1,8 бар. При таком давлении, согласно работе [Glasstone and Dolan, 1977], многоэтажное кирпичное здание с несущими стенами обрушится. Во втором случае (в дальнейшем — вариант 2) начальная кинетическая энергия несколько больше, чем в варианте 1, а именно 3,1 103 Мт ТНТ. Эллипс рассеяния по оценке СММ составляет 0,58 × 0,58 км, амплитуда ударной волны при скорости 16,7 км/с на расстоянии 20 км равна 3,2 бар, что также приводит к обрушению многоэтажного кирпичного здания. Будет повреждено и многоэтажное здание со стальным каркасом. В двух вариантах, выбранных нами для примера (комета и каменное тело), скорости входа соответствуют типичным скоростям входа таких тел. Размеры выбраны сравнительно небольшими. Они соответствуют, по нашему мнению, нижней границе размеров объектов, которые следует считать опасными. Они вызывают последствия, которые можно рассматривать в некоторых случаях как локальные катастрофы (ударная волна и пожары, кратеры и навал), в других — как региональные (цунами), а в третьих — возможно, как глобальные (ионосферные и магнитосферные возмущения, см. ниже). При увеличении диаметра тела и его энергии возрастает роль следа и неоднородности атмосферы в распространении ударной волны, и использование данных ядерных испытаний и энергетического подобия становится невозможным.
Характеристический размер ударной волны воздушного взрыва зависит от его энергии и пропорционален радиусу тела. Для тела размером Rb = 100 м и скоростью 50 км/с размер ударной волны может достигать 8 км, что близко к величине характеристической высоты атмосферы H. Для таких сравнительно небольших тел существенную роль играет след, и взрывная волна по форме сильно отличается от сферической. Неоднородность атмосферы также приводит к сильному отличию формы ударной волны от сферической.
Как видно из рис. 8.2, для кометы с Rb = 100 м диаметр области повышенного давления на поверхности Земли составляет примерно 10 км. Средняя скорость распространения ударной волны по поверхности при этом составляет примерно 5 км/с, т. е. волна еще сильная. Однако максимальное давление в ней намного меньше, чем в случае, если бы тело достигло Земли не разрушившись. Поэтому и размер кратера, и сейсмическая эффективность, и эффективность возникновения цунами (при ударе о воду) также намного меньше, чем для более крупных тел. В то же время эффективность воздействия ударной волны на сооружения, расположенные на поверхности, не слишком снижается по сравнению с таковой для воздушного взрыва с той же энергией. Систематические расчеты параметров ударных волн и механического действия на грунт или воду при различных размерах астероидных или кометных тел (в диапазоне 100–1000 м), различных начальных скоростях и углах наклона траектории еще предстоит произвести. Это позволит уточнить сейсмическую и цунамигенную опасность таких тел.
Избыточное и динамическое давления. Эффекты разрушения, вызванные взрывной волной, обычно соотносят с максимумом избыточного давления. В Нагасаки жилые дома разрушились на расстоянии вплоть до 2 км от эпицентра взрыва, где максимум избыточного давления Δp по оценкам составлял 20 кПа [Glasstone and Dolan, 1977]. Результаты ядерных испытаний показывают, что почти полное разрушение двухэтажного деревянного каркасного дома и неукрепленного кирпичного дома происходит при Δp = 30–35 кПа, прочный дом с каркасом из стали с алюминиевыми панелями обваливался при Δp = 20 кПа. Максимум избыточного давления, вызванного ударной волной, зависит не только от расстояния до эпицентра, но также от высоты взрыва. Величина Δp = 30 кПа достигалась на расстоянии 5 км от эпицентра для ядерного взрыва с энергией 1 Мт, когда он происходил на поверхности, и на расстоянии 9 км при взрыве на высоте 3,6 км [Glasstone and Dolan, 1977]. Для взрыва с энергией 30 Мт простые оценки, основанные на гидродинамическом подобии, дают радиус поражения R = 25 км при взрыве на высоте 10 км. Таким образом, размеры областей, которые могли бы быть опустошены падением метеороида с энергией около 30 Мт, сравнимы с радиусом крупного города. Существует другой важный фактор — динамическое давление, которое определяет повреждения, вызванные сильными ветрами, возникающими за фронтом взрывной волны. Для Δp = 35 кПа максимальное динамическое давление q = 4 кПа и максимальная скорость ветра составляет 260 км/ч. Но мы не будем углубляться в такие детали. Лишь упомянем, что полученная с помощью теоретических газодинамических расчетов [Коробейников и др., 1991] зона разрушения лесного массива неплохо согласуется с данными натурных исследований зоны воздействия при Тунгусском событии 1908 г.
Оценки величины зоны разрушений ударными волнами, вызванными падениями астероидов и комет, были даны в работе [Chapman and Morrison, 1994]. Авторы принимали во внимание избыточное давление на фронте ударной волны и динамическое давление, которое вызвало падение деревьев. Для калибровки они использовали Тунгусское событие [Зоткин, Цикулин, 1966], где ударные волны вызвали падение деревьев на площади 2000 км2, которая эквивалентна площади круга с радиусом Rs = 25 км. Предполагалось, что площадь As сильных повреждений строений приблизительно равна площади вывала леса. Для оценок может быть использовано следующее выражение:
As = πR2 s = 200E2/3 k, Rs = 8Ek1/3,
где радиус Rs выражен в километрах, площадь As — в квадратных километрах, энергия ударяющего тела Ek — в мегатоннах. Коэффициенты в формуле изменяются с высотой взрыва. «Оптимальная» высота h [км] составляет 6,4E1/3 [Glasstone and Dolan, 1977; Hills and Goda, 1993]. Если высота взрыва уменьшается до нуля, радиус Rs уменьшается приблизительно в 1,4 раза. Для E = 30 Мт получается радиус Rs = 18 км.
Прорыв атмосферы. Законы подобия, которыми мы пользовались для оценок, основаны на теоретических исследованиях гидродинамической задачи о распространении ударной волны после точечного взрыва в однородной атмосфере и на исследованиях с помощью численного эксперимента распространения взрывных волн, образованных химическими взрывами с высокой энергией и ядерными взрывами с энергиями менее 10 Мт. Но для больших энергий радиус Rs оказывается порядка характерной высоты атмосферы или превышает ее (для E = 103 Мт мы получаем Rs = 80 км), поэтому оценки следует уточнять численными расчетами.
Двумерные численные расчеты взрыва в неоднородной атмосфере и различные теоретические оценки прорыва атмосферы показывают, что ударная волна вследствие уменьшения плотности воздуха с высотой над поверхностью Земли движется вверх быстрее, чем в радиальном направлении. Численные расчеты [Jones and Sanford, 1977; Jones and Kodis, 1982] взрыва с энергией 500 Мт, произведенного на поверхности, показали, что динамическое давление превосходит порог вывала леса на расстояниях в 27,5 км вместо 45 км, как это следует из закона подобия. В действительности давление и скоростной напор снижаются еще больше за счет влияния следа, не учтенного в этих расчетах.
Результаты расчета для большого тела (диаметром 10 км) приведены на рис. 8.3. Картина распределения плотности и температуры в более поздние моменты времени показана на рис. 8.4. Хотя след здесь также присутствует, но выброс вверх в основном облегчен за счет быстрого падения плотности атмосферы с высотой.
8.1.3. Световой импульс и пожары. Падение Тунгусского космического тела 30 июня 1908 г. вызвало пожар на площади около 500 км2 [Vasilyev, 1998], что в 4 раза меньше, чем площадь опустошения леса взрывными волнами (2000 км2). Этот пожар наглядно демонстрирует роль светового излучения. В Хиросиме и Нагасаки 20–30 % всех жертв были ранены за счет ожога от прямого действия теплового излучения вспышки. Используя эти данные, можно ожидать, что лучистое воздействие при энергии взрыва в 10–30 Мт могло бы быть причиной ожогов незащищенной кожи первой степени (обратимое повреждение) для 82 % населения, а 15 % получили бы ожоги второй степени (которые можно вылечить за одну или две недели) [Glasstone and Dolan, 1977]. Конечно, жертвы прямого действия теплового излучения вне зоны «огненного шара» могут быть сокращены простыми способами гражданской обороны (убежище и другие меры защиты) при условии предупреждения о возможном падении космического объекта. Мы должны упомянуть также глазные травмы, вызывающие слепоту и ожоги сетчатки, но они также могут быть сокращены адекватной тренировкой использования специальных фильтров для глаз, опять же при условии предупреждения об опасности.