My-library.info
Все категории

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра. Жанр: Физика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Астероидно-кометная опасность: вчера, сегодня, завтра
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
150
Читать онлайн
Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра краткое содержание

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра - описание и краткое содержание, автор Борис Шустов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Астероидно-кометная опасность: вчера, сегодня, завтра читать онлайн бесплатно

Астероидно-кометная опасность: вчера, сегодня, завтра - читать книгу онлайн бесплатно, автор Борис Шустов

Переход на ракету с жидким топливом и увеличенным удельным импульсом (например, эквивалент рассмотренного выше «пакета» из десяти РДТТ — одна ракета-носитель «Энергия» с массой∼ 3000 т [Филин, 2001]) все равно не решит проблемы увода. К сожалению, приходится вспомнить о необходимости доставить на астероид массу порядка 3000–6000 т (а возможно, и более). Также нужно учесть и то, что масса полезной нагрузки любой ракетной системы составляет всего несколько процентов от общей стартовой массы. Поэтому для доставки рассмотренного средства увода на модельный астероид (причем последний и так взят практически предельно малых размеров) потребуется создание ракетного комплекса с общей стартовой массой уже порядка сотен тысяч тонн.

Таким образом, из приведенных оценок следует, что для решения задачи оперативного перехвата астероида даже небольших размеров однозначно требуется применение средств противодействия с удельной энергетикой, на несколько порядков превышающей энергетику как существующих, так и возможных в перспективе текущего столетия средств реактивной техники. Поэтому вполне естественным в ситуации перехвата является обращение к использованию атомной энергии в виде атомной или водородной бомбы [Сокольский и др., 1996]. Ограничимся оценкой чистой энергетической эквивалентности рассмотренных выше ракет и типичного атомного боезаряда.

Известно, что общий запас энергии двух-трех наиболее мощных ракетоносителей может быть сравним с энергией заряда 2–3 кт ТНТ [Алешков, 1972]. Тогда, например, потребовавшийся выше «пакет» из 10 ракетных ускорителей может считаться энергетически эквивалентным классической атомной бомбе мощностью 20–30 кт ТНТ, а доставка такого атомного средства противодействия на поражающий астероид для его увода кажется реализуемой.

Подобная нижняя оценка мощности бомбы является весьма оптимистичной, поскольку она совершенно не учитывает невысокий коэффициент полезного действия при преобразовании энергии атомного взрыва в импульс силы, притом заданного направления. Более того, вполне возможно, что вследствие специфических условий ядерного воздействия в космическом пространстве потребуется производить не поверхностный, а заглубленный взрыв [Симоненко и др., 1994]. Последнее резко усложняет схему воздействия на астероид и будет являться источником многочисленных осложнений при реализации увода астероида с поражающей орбиты.

По-видимому, любые дальнейшие оценки возможности технической реализации и количественных характеристик подобного «атомного противодействия» должны быть предметом специальных теоретических и экспериментальных исследований, проясняющих физику и механику воздействия ядерного взрыва на астероид в условиях космического пространства.


10.7.4. Динамические и энергетические характеристики маневра поражающего астероида. Рассмотрим условия успешного выполнения маневра увода астероида с поражающей траектории. Теперь можно полагать, что достаточный резерв времени позволяет провести активное противодействие не менее чем за виток орбиты астероида. Будем считать, что последняя аналогична земной, т. е. имеет малое наклонение и малый эксцентриситет, а период обращения Pa составляет величину порядка года. Тогда для оценок удобно взять производные околокругового движения астероида при начальных условиях и возмущающем ускорении, приведенных в работе [Эльясберг, 1965] и рассмотренных в настоящей главе. Как мы видели из проведенного в разделах 10.2–10.4 анализа, необходимо выбирать в качестве наиболее эффективного динамического воздействия приложение тангенциального приращения скорости VT. Такие воздействия дают максимальный промах астероида относительно точки его встречи с Землей.

Согласно импульсной схеме, уход вдоль траектории астероида Sa составляет:

Sa = 6π(r0/V0)VT Nв, (10.19)

где r0, V0 — радиус орбиты и скорость астероида, а Nв — число витков орбиты. Тогда, умножив выражение для Sa справа и слева на ma и учитывая, что (r0/V0) = Pa/2π, а VT = Pи/ma, получим

Ua≈ Pи(3PаNв). (10.20)

Величина 3PaNв заменяет время перехвата в (10.15) и имеет тот же смысл — в данном случае это время маневра. Можно видеть, что сверх очевидного значения времени маневра астероида PaNв специфика орбитального движения в рамках задачи маневра выразилась в появлении дополнительного множителя, равного 3. Отсюда видно, что в случае маневра астероида значение импульса уменьшается в Nв(3Pа/t) раз по сравнению со случаем перехвата. Так, например, для маневра на одном витке (Nв = 1) требуется импульс в 3(365/10)∼ 110 раз меньший, чем для перехвата, что весьма заметно.

В соответствии с разгонной схемой уход астероида будет определяться выражением

Sa = 6π2r0Nв2 (Tp/g0),(10.21)

где g0 — ускорение астероида, вызванное притяжением Солнца, Tp — постоянно действующее ускорение. Заметим, что g0 = µc/r02 (µc — гравитационный параметр Солнца) и Tp = Fp/ma. Тогда, учитывая известный закон Кеплера Pa2 = 4π2r03/µc, а также то, что время действия ускорения составляет NвPа, получим выражение для обобщенного параметра увода в случае маневра астероида:

Ua = Pp(1,5PаNв), (10.22)

аналогичное (10.20).


Таким образом, в рамках разгонной схемы потребный импульс также вдвое больше, чем в импульсной схеме, точно так же, как это имело место в случае перехвата. Поэтому использование импульсной схемы при маневре астероида и здесь остается предпочтительным.

Обращаясь к представленным относительно случая перехвата оценкам, видим, что уменьшение необходимого импульса примерно в 110 раз (и это при минимальном времени маневра — один виток) позволяет теперь обойтись одним бустером с РДТТ и притом с тягой, в 10 раз меньшей. По порядку величины это соответствует одной-двум твердотопливным ракетам класса «Минитмен-3» (тяга 80–90 тс при массе 35 т) [Алешков и др., 1972]. При увеличенном времени маневра, занимающем 2–4 витка орбиты, одной такой ракеты будет вполне достаточно. К сожалению, доставка и организация работы такого средства на астероиде по-прежнему представляются весьма неопределенно. Тем не менее, полученный выигрыш в величине потребного импульса силы стимулирует оценку других возможных технических средств разгона с малой тягой.

Согласно импульсной схеме, величина импульса увода составляла Pи ≈ 1, 5 1010 кг м/с. Теперь же, при времени маневра, равном ∼ 1 году, импульс уменьшается в 110 раз и становится равным Pи ≈ 1,35 108 кг м/с. Вспомним, что в рамках разгонной схемы необходимый импульс увеличивается вдвое, и тогда при длительности витка 1 год (т. е. tp = 3,15 107 с) потребная тяга (действующая в течение года) и создаваемое ей ускорение приобретут значения:

Fp = (2,7 108 кг м/с) /(3 3,15 107 с) ≈ 3 Н ≈ 300 гс,

gp = Fp/ma ≈ 3 10-9 м/с2. (10.23)

Возникает естественное желание, получив такие значения реактивной тяги и ускорения, оценить технологические рамки их реализации.

Допустим, что предполагается получить такую тягу за счет использования солнечного паруса. Известно [Эльясберг, 1965; Левантовский, 1980], что один грамм-силы на орбите Земли можно получить, применяя парус площадью ≈ 2000 м2. Следовательно, для маневра, выполняемого в течение года, понадобится парус с увеличенной в 300 раз площадью, а его размеры составят ≈ 800 × 800 м. Естественно, при увеличении срока маневра необходимая площадь паруса уменьшится обратно пропорционально. Так, для маневра, выполняемого в течение 4 лет, потребуется парус размером всего лишь (!) 400 × 400 м, монтируемый на астероиде (напомним, его диаметр 100 м).

Теперь предположим, что для этого используется электроракетная двигательная установка (ЭРДУ) имеющегося в настоящее время типа. Допустим многократное резервирование, что обеспечит ее непрерывную работу в течение года. Тогда, приняв оценочное удельное значение потребной мощности ≈ 150 Вт/1 гс, получим, что мощность устройства, питающего ЭРДУ, должна составлять∼ 45 кВт. Логично предположить питание от солнечных батарей. Тогда, приняв, что для них типичная удельная мощность равна 1 кВт при площади ∼ 5 м2 [Скребушевский, 1992], увидим, что требуемая мощность может быть получена от солнечных батарей с общей площадью ≈ 250 м2 и размерами 16 × 16 м.

Проявив некоторый оптимизм и предположив безотказную работу ЭРДУ в течение 4 лет, получим соответственно потребную мощность батарей, равную ≈ 12 кВт, что при размерах панелей солнечных батарей ≈ 11 × 11 м уже вполне приемлемо. Для полноты представления оценим дополнительно требуемый запас рабочего тела ЭРДУ, исходя из весьма консервативной оценки удельного импульса величиной J ≈ 2000 c. Тогда для создания тяги 300 гс в течение года потребуется масса рабочего тела, равная Mp = Fptp/J ≈ 4,5 т, что тоже не выходит за рамки возможного.


Борис Шустов читать все книги автора по порядку

Борис Шустов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Астероидно-кометная опасность: вчера, сегодня, завтра отзывы

Отзывы читателей о книге Астероидно-кометная опасность: вчера, сегодня, завтра, автор: Борис Шустов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.