Попросите кого-либо на улице объяснить, что такое энергия, – и получите либо осмысленный ответ, либо кучу всякого вздора в духе нью-эйдж[28]. В массовой культуре существует много разных значений слова «энергия», поскольку оно употребляется очень широко. Следует отметить, однако, что на самом деле есть точное определение энергии, которое нельзя использовать для объяснения лей-линий[29], исцеления кристаллами, жизни после смерти или реинкарнации. Здравомыслящий человек мог бы сказать, что энергию можно хранить внутри аккумуляторной батареи, где она находится в состоянии ожидания до тех пор, пока кто-то не «замкнет цепь». Кто-то другой, возможно, возразит, что энергия – это показатель количества движения и что быстро движущиеся объекты обладают большей энергией, чем более медленные. Энергия, которую содержит море или ветер, – вот еще примеры определений. Вам могут также сказать, что горячие объекты содержат больше энергии, чем холодные. Гигантский маховик, который находится внутри электростанции, может накапливать энергию, которая высвобождается затем в электросеть для удовлетворения потребностей населения в электроэнергии. Кроме того, энергия выделяется в процессе деления атомного ядра. Это только несколько примеров присутствия энергии в повседневной жизни. Во всех этих случаях физики могут представить энергию в количественной форме и использовать эту информацию для подведения баланса при подтверждении факта, что суммарный эффект любого процесса сохраняет неизменным общее количество энергии.
Для того чтобы увидеть закон сохранения энергии в действии, давайте в последний раз вернемся к сталкивающимся бильярдным шарам. До столкновения каждый из них обладает определенной энергией вследствие своего движения. Физики называют такую энергию кинетической. В Оксфордском словаре английского языка слово «кинетический» определяется как «обусловленный или возникающий вследствие движения», так что это правильный термин. Ранее мы исходили из того, что два шара движутся с одинаковой скоростью и имеют одинаковую массу. Затем они сталкиваются и отскакивают друг от друга с равной скоростью в противоположных направлениях. Такой вывод в значительной мере продиктован законом сохранения импульса. Более тщательный анализ ситуации позволяет определить, что скорость движения шаров после столкновения немного меньше их скорости до столкновения. Это объясняется тем, что часть начальной энергии рассеялась во время столкновения. Наиболее очевидное рассеяние энергии – переход ее части в звук. Когда бильярдные шары сталкиваются друг с другом, они воздействуют на молекулы воздуха, и это возмущение достигает наших ушей. Таким образом, часть начальной энергии теряется, из-за чего у шаров после столкновения остается меньше энергии. С точки зрения темы данной книги нам на самом деле не нужно знать, как измерить энергию во всех ее проявлениях, хотя формула кинетической энергии нам все же пригодится немного позже. Каждый, кто изучал в средней школе физику, навсегда запомнил эту формулу: кинетическая энергия = mv² ÷ 2. Важно понимать, что энергию можно выразить в количественной форме одним числом, а также что общее количество энергии в системе всегда остается неизменным.
А теперь вернемся к нашему разговору. Мы ввели концепцию импульса в качестве примера величины, которая описывается вектором. Наряду с энергией практическая польза импульса обусловлена тем, что это сохраняющаяся величина. Все это было бы просто замечательно, если бы не одна огромная дилемма. Импульс – вектор, существующий только в трех измерениях нашего повседневного опыта. По большому счету вектор импульса может указывать вверх, вниз, на юго-восток или в любом другом направлении движения. Однако всю предыдущую главу мы доказывали, что наша склонность разделять пространство и время – это заблуждение. Нам нужны стрелки, которые указывали бы в четырех направлениях пространства-времени, в противном случае мы так и не сможем составить фундаментальные уравнения с учетом теории Эйнштейна. Позвольте повторить еще раз: фундаментальные уравнения должны включать в себя объекты, существующие в пространстве-времени, а не объекты, существующие отдельно в пространстве или во времени, поскольку объекты такого типа носят субъективный характер. Если вы помните, ни размер объекта в пространстве, ни промежуток времени между двумя событиями нельзя отнести к категории величин, со значением которых согласятся все без исключения. Именно это мы имеем в виду, утверждая, что такие объекты носят субъективный характер. Импульс также представляет собой вектор, направленный куда-то только в пространстве. Такое предубеждение против времени сеет семена его разрушения. Предвещает ли пространство-время крушение этого самого фундаментального из всех законов физики? Вновь открытая структура пространства-времени действительно сеет семена разрушения, но она указывает нам также дальнейший путь: нам необходимо найти инвариантную величину, которая сможет занять место устаревшего трехмерного импульса. А вот и ключевой момент нашего повествования: такая величина существует.
Давайте внимательнее взглянем на трехмерный вектор импульса. На рис. 11 он представлен в виде стрелки, которая может отображать расстояние, на которое откатывается шар, перемещаясь по столу[30]. Если описывать ситуацию точнее, то предположим, что в полдень шар находится у одного конца этой стрелки, а через две секунды – у другого. Если шар перемещается на сантиметр каждую секунду, тогда длина стрелки равна двум сантиметрам. Получить вектор импульса не составляет проблем. Он представляет собой стрелку, указывающую абсолютно в том же направлении, что и на рис. 11, но ее длина другая и равна скорости нашего шара (в данном случае один сантиметр в секунду), умноженной на его массу, которая составляет, к примеру, десять граммов. Физики сказали бы, что вектор импульса этого шара имеет длину десять грамм-сантиметров в секунду (в краткой форме они записали бы это так: 10 г · см/с). Здесь снова целесообразно ввести абстрактные символы, вместо того чтобы использовать конкретную массу или скорость. Как всегда, нам не хотелось бы превращаться в школьных учителей из вашей юности. Но… если ∆x – это символ, которым обозначается длина стрелки, ∆t – промежуток времени, а m – масса шара (в нашем примере ∆x = 2 см, ∆t = 2 с, m = 10 г), то вектор импульса имеет длину m∆x/∆t. В физике принято использовать греческий символ ∆ (произносится как «дельта») для обозначения разности между двумя значениями; следовательно, ∆t обозначает интервал времени между двумя событиями, а ∆x – длину чего-либо, в данном случае расстояние в пространстве между начальным и конечным положениями шара.
Рис. 11
Нам удалось построить вектор импульса шара в трехмерном пространстве, хотя вряд ли это можно назвать самым увлекательным из всего, что мы сделали. Теперь предпримем смелый шаг и попытаемся построить вектор импульса в пространстве-времени, причем осуществим это точно таким же способом, что и в трехмерном пространстве. Единственное ограничение – мы будем использовать только те объекты, которые носят универсальный характер в пространстве-времени.
Снова начнем со стрелки, на этот раз указывающей направление в четырехмерном пространстве, как видно на рис. 12. Один ее конец показывает, где находится наш шар в начальный момент времени, а другой – где он будет через какое-то время. Длину стрелки необходимо определять по формуле Минковского для расчета расстояния в пространстве-времени, а значит, она задается уравнением (∆s)2 = (c∆t)2 – (∆x)2. Вспомните, что ∆s – это длина, с которой будут согласны все без исключения (то, что ни в коем случае нельзя сказать ни о ∆x, ни о ∆t по отдельности), а значит, именно это расстояние мы должны использовать вместо расстояния ∆x, представленного в определении импульса в трехмерном пространстве. Но чем заменить интервал времени ∆t? (Не забывайте: мы пытаемся найти замену m∆x/∆t в четырехмерном пространстве.) Проблема в том, что мы не можем использовать ∆t, поскольку эта величина не инвариантна в пространстве-времени. Как мы неоднократно подчеркивали, интервалы времени для разных наблюдателей различны, а значит, мы не должны использовать временные интервалы в определении четырехмерного импульса. Но какие у нас есть варианты? На что мы могли бы разделить длину стрелки, чтобы вычислить скорость движения шара в пространстве-времени?