My-library.info
Все категории

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Почему Е=mc²? И почему это должно нас волновать
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
117
Читать онлайн
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать - описание и краткое содержание, автор Брайан Кокс, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать читать онлайн бесплатно

Почему Е=mc²? И почему это должно нас волновать - читать книгу онлайн бесплатно, автор Брайан Кокс

Рис. 12


Нам необходимо вывести нечто более совершенное, чем старый трехмерный импульс, а также убедиться, что если мы имеем дело с объектами, движущимися со скоростью, которая гораздо меньше скорости света, то новый импульс приблизительно эквивалентен старому. С учетом этого требования мы должны разделить длину нашей стрелки в пространстве-времени ∆s на величину того же типа, что и интервал времени. В противном случае новый четырехмерный импульс будет представлять собой нечто абсолютно иное по сравнению со старым трехмерным импульсом. Промежутки времени можно измерять в секундах, значит, нам следует получить некую величину, которую тоже можно было бы измерять в секундах. Учитывая инвариантные величины в пространстве-времени, скорость света c и расстояние ∆s, есть только один возможный вариант: число, полученное посредством деления длины стрелки (∆s) на скорость c. Другими словами, если ∆s измеряется в метрах, а скорость c – в метрах в секунду, то ∆s/c – в секундах. Это и должно быть то число, на которое нам необходимо разделить длину стрелки, поскольку это единственная имеющаяся в нашем распоряжении инвариантная величина, измеряемая в требуемых единицах, – время. Давайте пойдем дальше и разделим ∆s на время ∆s/c. В результате получим просто c (по той же причине, что и в случае, когда результат деления единицы на ½ равен двум). Другими словами, четырехмерный аналог скорости в нашей формуле трехмерного импульса – это такой универсальный показатель, как предельная космическая скорость c.

Все это может показаться вам знакомым, но только потому, что так и должно быть. Мы лишь рассчитали скорость объекта (в нашем примере шара) в пространстве-времени и получили в итоге c. Но мы уже приходили к аналогичному выводу в предыдущей главе, когда анализировали движение мотоциклиста по равнине пространства-времени. В контексте данной главы мы добились большего, поскольку пришли к выводу, что вектор скорости в пространстве-времени можно использовать также в новом определении четырехмерного импульса. Вектор скорости объекта, движущегося в пространстве-времени, всегда имеет протяженность c и всегда указывает в пространстве-времени в направлении движения объекта.

Все, что нам необходимо сделать, для того чтобы завершить построение нового вектора импульса в пространстве-времени, – это умножить вектор скорости в пространстве-времени на массу m. Из этого следует, что наш предполагаемый вектор импульса всегда имеет длину, равную mc, и указывает в направлении движения объекта в пространстве-времени. На первый взгляд этот новый вектор импульса немного скучноват, поскольку его длина в пространстве-времени неизменна. Создается впечатление, что наше начало вряд ли можно назвать удачным. Однако мы не должны останавливаться. Нам еще предстоит выяснить, существует ли взаимосвязь между вектором импульса в пространстве-времени, который мы только что построили, и устаревшим трехмерным вектором, или, если уж на то пошло, пригодится ли он нам в новом мире пространства-времени.

Для того чтобы углубиться в ситуацию, давайте посмотрим на те части нашего нового вектора импульса в пространстве-времени, которые указывают направление в пространстве и времени по отдельности. Увы, здесь нам не обойтись без математики. Приносим извинения читателям, не владеющим глубокими математическими знаниями, и обещаем продвигаться очень медленно. Помните: у вас всегда есть возможность бегло просмотреть уравнения и перейти к заключительным выводам. Математика делает приведенные здесь доводы более убедительными, но вы вполне можете продолжать чтение, не углубляясь в детали. Точно так же хотим извиниться и перед читателями, знакомыми с математикой, за слишком подробное изложение материала. Но ведь нельзя угодить всем сразу!

Ранее мы с вами вывели выражение для длины вектора импульса в трехмерном пространстве – mx/t. Мы исходили из того, что ∆x следует заменить на ∆s, а ∆t – на ∆s/c, для того чтобы получить четырехмерный вектор импульса, который имеет на первый взгляд неинтересную длину mc. Потерпите нас еще один абзац и позвольте написать замену для ∆t, то есть для ∆s/c, в полном виде: ∆s/c равно √((ct)² − (∆x)²) ÷ c. Это несколько громоздкое выражение, однако небольшая математическая манипуляция позволяет записать его в более простом виде: ∆t/γ, где γ = 1 ÷ √(1 − v² ÷ c²). Для получения этой формулы мы использовали тот факт, что скорость объекта рассчитывается как v = ∆x/t. В таком случае γ – это не что иное, как множитель, о котором шла речь в главе 3, выражающий величину замедления времени с точки зрения того, кто наблюдает за быстро пролетающими мимо часами.

В действительности мы уже почти добрались до цели. Смысл всех этих математических выкладок состоит в том, что они позволяют определить, в какой степени вектор импульса указывает направление в пространстве и времени по отдельности. Для начала давайте вспомним, как мы поступали с вектором импульса в трехмерном пространстве. Рис. 11 поможет нам представить себе эту ситуацию. Трехмерный вектор импульса ориентирован в ту же сторону, что и стрелка на рисунке, поскольку он указывает в том направлении, в котором движется шар. Разница лишь в том, что изменится длина вектора, потому что нам необходимо умножить длину стрелки на массу шара и разделить на временной интервал. Аналогичная ситуация складывается и для четырехмерного вектора. Теперь вектор импульса указывает направление в пространстве-времени, в котором движется шар, что соответствует направлению стрелки на рис. 12. В этом случае для получения вектора импульса нам следует изменить масштаб длины стрелки, но на сей раз раз мы должны умножить ее на массу шара и разделить на инвариантную величину ∆s/c (которая, как мы продемонстрировали выше, равна ∆t/γ). Если вы внимательно посмотрите на стрелку на рис. 12, то увидите, что, если мы захотим изменить длину на определенную величину, сохранив при этом направление, нужно просто изменить часть, указывающую в направлении x (∆x), и часть, указывающую в направлении времени (ct), в одинаковое количество раз. Таким образом, длина части вектора импульса, которая указывает в направлении пространства, представляет собой ∆x, умноженное на m и деленное на ∆t/γ, что можно записать как γmx/t. Если вспомнить, что v = ∆x/t – это скорость движения объекта в пространстве, то мы получим следующий ответ: часть вектора импульса в пространстве-времени, указывающая в направлении пространства, имеет длину, равную γmv.

Теперь все становится действительно интересным: вектор импульса в пространстве-времени, который мы только что построили, никак нельзя назвать скучным. Если скорость v нашего объекта намного меньше скорости света c, значение γ оказывается очень близко к единице. В этом случае мы снова получаем старый импульс, а именно – произведение массы на скорость: p = mv. Это очень обнадеживает, так что давайте двигаться дальше. В действительности нам удалось сделать нечто гораздо большее, чем просто преобразовать старый трехмерный импульс в новую четырехмерную структуру. Начнем с того, что мы получили, по-видимому, более точную формулу, поскольку значение γ может быть равным единице, только когда скорость равна нулю.

Но то, что мы увидим, когда рассмотрим часть вектора импульса, указывающую в направлении времени, еще интереснее, чем модифицированная формула p = mv. После всего, что мы уже проделали, нам нетрудно будет выполнить соответствующие расчеты (ответ показан на рис. 13). Длина части нового вектора импульса, которая указывает в направлении времени, равна значению ct, умноженному на m и деленному на ∆t/γ, что представляет собой γmc.


Рис. 13


Следует помнить, что импульс интересует нас только потому, что он сохраняется. Поэтому мы искали новый четырехмерный импульс, который будет сохраняться в пространстве-времени. Мы можем представить себе совокупность векторов импульса, указывающих в разных направлениях. Они могут отображать, например, импульсы определенного количества частиц, которые должны вот-вот столкнуться. После столкновения образуется новая совокупность векторов импульса, указывающих в других направлениях. Однако закон сохранения импульса гласит, что общая сумма всех новых стрелок должна в точности соответствовать сумме исходных. Это, в свою очередь, означает, что должна сохраняться также общая сумма частей всех стрелок, указывающих в направлении пространства, так же как и сумма частей, указывающих в направлении времени. Таким образом, если мы подсчитаем значения γmv для каждой частицы, то общая сумма этих значений до столкновения должна быть такой же, как и общая сумма после него. То же самое происходит и с частями вектора импульса, указывающими в направлении времени, только в этом случае сохраняется общая сумма значений γmc. Похоже, у нас есть два новых закона физики: γmv и γmc – это сохраняющиеся величины. Но чему они соответствуют? На первый взгляд во всем этом нет ничего особенного. Если скорость достаточно низкая, то значение γ очень близко к единице, а γmv превращается просто в mv. Таким образом, в итоге все тот же закон сохранения импульса. Это обнадеживает, поскольку мы рассчитывали, что нам удастся прийти к выводам, которые признали бы физики викторианской эпохи. Безусловно, Брюнель и другие великие инженеры XIX столетия прекрасно обходились без пространства-времени, поэтому наше новое определение импульса должно давать почти те же ответы, что и во времена промышленной революции, – при условии, что объекты перемещаются со скоростью, далекой от скорости света. В конце концов, Клифтонский подвесной мост не упал после того, как Эйнштейн сформулировал теорию относительности.


Брайан Кокс читать все книги автора по порядку

Брайан Кокс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Почему Е=mc²? И почему это должно нас волновать отзывы

Отзывы читателей о книге Почему Е=mc²? И почему это должно нас волновать, автор: Брайан Кокс. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.