My-library.info
Все категории

Алекс Беллос - Красота в квадрате

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Алекс Беллос - Красота в квадрате. Жанр: Прочее издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Красота в квадрате
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
284
Читать онлайн
Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате краткое содержание

Алекс Беллос - Красота в квадрате - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Красота в квадрате читать онлайн бесплатно

Красота в квадрате - читать книгу онлайн бесплатно, автор Алекс Беллос

Значение концепции числа, используемой поначалу для подсчета физических объектов, было расширено посредством введения понятия отрицательных, а затем и мнимых чисел. В связи с этим возник закономерный вопрос о том, создаст ли алгебра еще более абстрактную категорию чисел. Например, что представляет собой квадратный корень квадратного корня из минус единицы? Если всерьез задуматься об этой концепции, сперва она перевернет ваш разум вверх дном, а затем вывернет наизнанку. Речь идет о решении уравнения:

или:

что эквивалентно:

x2 = i

Поражает тот факт, что решение этого уравнения представляет собой комплексное число20 [9]:

В XVIII веке математики поняли, что применение мнимых чисел позволяет решить любое уравнение. Это вывод оказался настолько важным, что его стали позиционировать как основную теорему алгебры. Уравнение, записанное с помощью комплексных чисел, всегда имеет решение в виде комплексных чисел. Дверь, в которую вошел Рафаэль Бомбелли, для того чтобы изучить квадратные корни отрицательных чисел, оказалась дверью в изолированную комнату. Но что это была за комната! Болезненные чувства, испытываемые математиками по отношению к мнимым числам, уступили место радости. В настоящее время концепция числа i считается вполне естественным и эффективным расширением числовой системы. Благодаря введению единственного символа математики получили изысканно самодостаточную абстрактную вселенную. Это была выгодная сделка!

Мнимые числа — главные герои двух самых известных примеров математической красоты. Один из них — картина (о которой мы поговорим немного позже), а другой — уравнение, известное как тождество Эйлера. В 2003 году, во время атаки экотеррористов на автосалон в Лос-Анджелесе, эту формулу нанесли спреем на бок внедорожника. Характер данного рисунка привел к аресту студента, изучавшего физику в Калифорнийском технологическом институте [10]. «Все должны знать тождество Эйлера», — объяснил он судье. Безусловно, студент был совершенно прав, но от разрисовывания автомобилей все же следует воздержаться. Тождество Эйлера — это «быть или не быть» математики, самая знаменитая формула и фрагмент культурного наследия, находящий отклик и за пределами своей области:

eiπ + 1 = 0

Это поразительное равенство. Оно объединяет пять самых важных чисел в математике: 1 — первое натуральное число; 0 — абстрактное представление понятия «ничего»; π — отношение длины окружности к диаметру; е — экспоненциальная константа; i — квадратный корень из минус единицы. Все эти числа возникли в отдельных областях исследований и при этом образуют идеальное сочетание. Невозможно было даже представить себе столь безукоризненный синтез математической мысли. В математике красота — это изысканность формулировок и установление неожиданных связей. Не существует другого уравнения, которое было бы столь же кратким и в то же время столь же глубоким.

Но что же все-таки значит то, что у действительного числа (числа е) мнимый показатель степени (iπ)? В XIX столетии профессор математики Гарвардского университета Бенджамин Пирс ответил на этот вопрос так: «Мы не можем понять и не знаем, что это значит. Но мы доказали это, следовательно, оно должно соответствовать истине». Пирс был совершенно прав. Математика начинается с исходных предположений и приводит туда, куда они ведут. Именно поэтому она столь увлекательна. На самом деле Эйлер открыл эту формулу, позабыв о смысле. Поскольку тождество Эйлера — самое известное уравнение в математике, я бы оказал вам плохую услугу, если бы хотя бы кратко не рассказал эту историю.

Единственное, что вам понадобится в качестве подготовки, — принять без доказательства три следующих уравнения. Многоточия в конце означают, что правая сторона уравнения продолжается до бесконечности:

Если x равно 1, то первый ряд дает нам формулу расчета экспоненциальной константы е, о которой шла речь в предыдущей главе. (Помните, что факториал числа n, записываемый как n!, означает, что это число умножается на все числа от 1 до n.) Следующие два бесконечных ряда — это синус и косинус x, тригонометрические функции, которые тоже должны быть знакомы вам по предыдущим главам. Однако, для того чтобы ряды синуса и косинуса пригодились нам здесь, необходимо использовать специальную единицу измерения — радиан, а не традиционную единицу — градус. Полный круг, или 360 градусов, — это 2π радиан, а половина круга, или 180 градусов, — π радиан. (Радиан называется именно так, поскольку 1 радиан — это угол в центре круга, образующий дугу окружности, длина которой равна ее радиусу, как показано ниже. Радиан — более естественный способ измерения угла, чем градусная система, известная со времен Вавилона. Начиная с XVIII века математики отдают предпочтение измерению углов в радианах [11].)

Радиан

На интуитивном уровне невозможно понять, что означает возвести число (например, число е) в мнимую степень. Однако Эйлер понял, что это можно сделать алгебраическим способом, воспользовавшись представленным выше бесконечным рядом для ex. Например, если мы подставим ix вместо x, получится следующее уравнение:

Убрав скобки, получим такое уравнение:

Мы можем еще больше упростить это уравнение, поскольку по определению i2 = −1:

i3 = i × i × i = i2 × i = –1 × i = –i,

i4 = i2 × i2 = –1 × –1 = 1,

i5 = i4 × i = 1 × i = i,

i6 = –1

И так далее.

Другими словами, вместо членов ряда i2, i4, i6, i8 … мы можем подставить значения −1, 1, −1, 1 …, а вместо i3, i5, i7, i9 … — −i, i, −i, i … Следовательно, уравнение можно записать так:

Закономерность легче увидеть, если выделить мнимые члены жирным шрифтом:

Этот ряд можно преобразовать так:

Но ведь это в точности те же члены, что и в представленных выше уравнениях для косинуса и синуса x:

eix = cos x + i sin x

Возведение числа е в мнимую степень позволило Эйлеру найти тригонометрические функции. Другими словами, он взял две знакомые, но не связанные друг с другом концепции, перемешал их — и как по мановению волшебной палочки появилось нечто неожиданное: две еще более привычные концепции из области, которая считалась совершенно не имеющей отношения к данной ситуации. Занимаясь математикой, порой испытываешь ощущение, будто это алхимия.

В завершение Эйлер сказал: пусть x = π, что в радианной мере эквивалентно 180 градусам. Поскольку cos π = cos 180° = –1, а sin π = sin 180° = 0, мнимый член ряда исчезает.

eiπ = cos π + i sin π

Это сокращается до следующей формулы:

eiπ = –1

Или:

eiπ + 1 = 0

По всей вероятности, именно благодаря революционной работе Эйлера с мнимыми числами они оказались в центре математики, где с тех самых пор и остаются. Но, несмотря на это, для Эйлера и его современников мнимые числа по-прежнему были экзотическими, непостижимыми чудовищами. Само их название, которое подразумевало, что они не существуют, являлось серьезным препятствием, мешавшим их полному принятию. В начале XVIII века Готфрид Лейбниц сказал, что √–1 — это «почти что амфибия между бытием и небытием». Возможно, математика развивалась бы быстрее, если бы вместо термина «мнимые числа» в словарь вошло название «числа-амфибии».

Мы с вами уже знаем, что математики полностью освоились с концепцией отрицательных чисел лишь тогда, когда смогли увидеть их на бумаге в виде точек, отображенных на числовой оси. То же самое произошло и с мнимыми числами. Философские опасения по поводу комплексных чисел исчезли только после изобретения простого способа визуальной интерпретации этой концепции.

Представленная на рисунке ниже комплексная плоскость образована вертикальной числовой осью, на которой откладываются мнимые числа, и горизонтальной числовой осью, на которой откладываются действительные числа (как оси х и у в обычной системе координат). Комплексное число a + bi — это точка на комплексной плоскости с координатами (a, b) — a по горизонтальной оси, b — по вертикальной. На рисунке я отметил число 3 + 2i, другими словами — точку с координатами (3, 2). Комплексная плоскость — достаточно простая идея, но тем не менее все три ее автора независимо друг от друга работали где-то на периферии сообщества самых влиятельных математиков того времени: Каспер Вессель, землемер из Копенгагена; Жан Робер Арган, счетовод из Парижа, и аббат Эдриан-Кантен Буэ, французский священник, который сбежал от революции и поселился в городе Бат. Тот факт, что ни один из великих математиков той эпохи не предложил идею комплексной плоскости, говорит об их зависимости от доктрины о том, что мнимые числа существуют только в воображении.


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Красота в квадрате отзывы

Отзывы читателей о книге Красота в квадрате, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.