My-library.info
Все категории

Журнал «Юный техник» - Юный техник, 2008 № 01

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Журнал «Юный техник» - Юный техник, 2008 № 01. Жанр: Периодические издания издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Юный техник, 2008 № 01
Издательство:
неизвестно
ISBN:
нет данных
Год:
-
Дата добавления:
10 сентябрь 2019
Количество просмотров:
95
Читать онлайн
Журнал «Юный техник» - Юный техник, 2008 № 01

Журнал «Юный техник» - Юный техник, 2008 № 01 краткое содержание

Журнал «Юный техник» - Юный техник, 2008 № 01 - описание и краткое содержание, автор Журнал «Юный техник», читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Популярный детский и юношеский журнал.

Юный техник, 2008 № 01 читать онлайн бесплатно

Юный техник, 2008 № 01 - читать книгу онлайн бесплатно, автор Журнал «Юный техник»

Поначалу покупатели раскритиковали модель, но уже через полгода большинство недостатков было исправлено, и на свет появилась новая версия — V2. Сейчас этот автомобиль можно назвать народным: по продажам он занимает в Индии одно из первых мест.



Технические характеристики:

Количество дверей… 5

Длина… 3,66 м

Ширина… 1,625 м

Высота… 1,485 м

Снаряженная масса… 930 кг

Максимальная масса… 1380 кг

Объем двигателя… 1405 см3

Мощность двигателя… 60 л.с.

Максимальная скорость… 150 км/ч

Объем топливного бака… 37 л

Время разгона до 100 км/ч… 15 с

Расход топлива:

в городе… 10 л/100 км

на шоссе… 6 л/100 км

ПОЛИГОН

Причуды кипящего потока

В классе нетрудно поставить опыты по оптике, электростатике, магнетизму. А вот как быть, к примеру, со сверхзвуком?

Процессы в реактивных двигателях самолетов показать в школе, казалось бы, просто невозможно, поскольку скорость звука в воздухе достаточно велика — 340 м/с и для их получения нужны сверхзвуковые аэродинамические трубы огромной мощности. Обычно они кратковременно работают от запаса сжатого воздуха из баллона.

Стремясь уменьшить размеры и мощность аэродинамической трубы, изобретатели предлагали применять в них вместо воздуха иные газы, в которых скорость распространения звука была бы меньше. Однако успеха они не добились. Размеры и мощность сократились ненамного, зато появились другие трудности, газы оказывались дороги, ядовиты, неудобны в работе. И все же решение здесь есть.

В 70-е годы прошлого века ученые подметили, что смесь воды и небольшого количества (1–5 %) водяного пара течет по трубам медленнее, чем просто вода, хотя теоретически ее скорость может достигать скорости звука. Для воды скорость звука — 1440 м/с, для пара — 300 м/с. Оказалось, скорость звука в пароводяных смесях удивительно низка и может доходить до 6–8 м/с, отчего порою и «не хочет» такая смесь течь по трубам.

С пароводяными смесями многие из нас встречались, даже того не подозревая. Бывает, повернешь водопроводный кран — и раздается грохот. Это вскипает вода, проходя через кран.

Откуда в кране может взяться столько тепла, чтобы вода вдруг вскипела? Вспомним, что температура кипения воды зависит от давления. Она кипит при 100 °C лишь при нормальном атмосферном давлении. Если же давление снизить, то снижается и температура кипения.

Так, в горах на высоте 3000 м вода кипит при 90 °C, а на высоте 16 тыс. м вода закипает при 18 °C.

При открывании крана вода начинает течь через узкий зазор и скорость ее в этом месте по закону Бернулли возрастает, а давление становится столь низким, что вода вскипает и в ней образуется множество пузырьков пара. Далее, пройдя узкое место, вода свое движение замедляет, давление в ней повышается, пузырьки пара схлопываются, создавая при соударении тот самый шум, что мы слышим.



При повороте крана образуется узкая щель. В ней вода течет с большой скоростью, давление понижается, и она закипает. Образуются пузырьки пара. В широком месте трубопровода пузырьки схлопываются.


Если воду пропустить через расширяющееся сопло, она может превратиться в пароводяную смесь, а скорость ее превысит скорость звука, допустимую в этой смеси. На срезе сопла возникнет скачок уплотнения — тонкий пароводяной слой с очень высоким давлением.

Подобные процессы подробно исследованы ведущими специалистами Автономного некоммерческого общества «Аспект-Конверсион» В.А. Коссом и его коллегами, и это позволяет продемонстрировать в школьных условиях обтекание тела сверхзвуковым потоком.

Абсолютная величина его скорости для природы процесса безразлична и на виде наблюдаемой картины не скажется. Потому и не стоит создавать поток воздуха с самолетными скоростями более 330 м/с, а можно ограничиться скоростями 6 — 10 м/с.

Вместо воздуха мы возьмем пароводяную смесь, содержащую по массе около 1–5 % водяного пара, для которой такие скорости — это уже скорость звука. Чтобы разогнать ее до такой скорости, нам потребуется в тысячи раз меньшая энергия, чем для разгона такого же количества воздуха.

На последнем рисунке изображена схема школьной установки для демонстрации картин сверхзвукового обтекания. Установка работает от водяного насоса, дающего давление 2,5–3 атм., а в городах для ее работы достаточно давления водопровода. Изучаемый предмет располагается в сверхзвуковом участке — расширяющейся части сопла. Но поскольку процесс необходимо наблюдать, сопло в этом месте нужно сделать прозрачным и плоским. (Такие сопла впервые применил великий немецкий аэрогидромеханик Людвиг Прандтль (1875–1953). Возникающие при обтекании ударные волны можно увидеть в теневой проекции, освещая сопло лампочкой от карманного фонаря в абажуре из черной бумаги.

Запускается установка следующим образом. Сначала получим на экране или белой стене теневую проекцию прозрачного сопла. После этого откройте кран и плавно увеличьте подачу воды. Постепенно вы увидите, что в сопле образовался пар, и в определенный момент в его расширяющейся части появится четкая тень скачка уплотнения. После этого можно при помощи куска проволоки ввести в сопло пробное тело и увидеть появление на нем ударных волн.



Установка для демонстрации спектров сверхзвукового обтекания:

1 — сужающийся канал; 2 — плоское сопло Лаваля; 3 — изучаемое тело; 4 — точечный источник света.

А. ИЛЬИН

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ

По следам маркиза Ворчестера

Если вы разбирали свой велосипедный насос, то заметили, что он очень прост. Но это лишь потому, что мощность его мала. А вообще-то насосы, как правило, очень сложны.

Часто вместо поршня цилиндрической формы в них применяются вытеснительные устройства, выполняющие ту же роль. Их придумано превеликое множество, и каждый месяц в мире патентуются десятки новых. Но вместе с тем изобретатели не теряют надежды создать насос предельно простой, вообще без движущихся элементов. Вот какой опыт поставил в 1661 г. маркиз Ворчестер (Англия). Пушечный ствол он наполнил водой на три четверти и заклепал. После этого развел под этой пушкой огонь… «По прошествии 24 часов она лопнула со страшным треском… я увидел, как вода била постоянным фонтаном в 40 футов высотой», — написал маркиз в своих дневниках. Опыт маркиза нетрудно повторить, использовав вместо пушки металлический пенал от лекарства. Заткните его пробкой, пропустив через нее тонкую трубочку. Если налить в пенал немного воды и подержать над огнем, то очень скоро вода закипит и из трубки начнет бить фонтан.

Маркизу Ворчестеру повезло, что он остался жив, и вы будьте осторожны. Вода в фонтане может быть горячей. Заранее наденьте защитные очки и вообще работайте лучше с учителем.



Рис. 1. Каких только насосов не придумало человечество!


Как вы убедились, тепло позволяет поднимать воду на значительную высоту. Но как поднять таким способом холодную воду, например, из подвала или шахты?

На протяжении веков водоподъемные машины работали на мускульной силе людей и животных. Лишь через 40 лет после опыта маркиза Ворчестера появилась первая водоподъемная машина, работавшая от тепла сгорания топлива. Создал ее англичанин Томас Сэвери.

Проделаем простой опыт.

Нальем в пластиковую бутылку горячую воду, завинтим пробку и быстро обольем холодной водой. Бутылка тотчас сомнется, а на стенках ее появятся капельки сконденсировавшегося пара. В бутылке возникло разрежение, и она была смята атмосферным давлением.

Теперь превратим эту бутылку в водоподъемную машину. Для этого сделаем в пробке отверстие и герметично закрепим в нем при помощи пластилина пластиковую трубочку.

Залейте бутылку горячей водой примерно на одну треть. Заверните крышку, а другой конец гибкой трубочки опустите в воду и поскорее облейте бутылку холодной водой. В ней тотчас образуется вакуум, и через трубочку в бутылку потечет струя воды.

Так примерно работали первые водоподъемные машины Сэвери. Одна из них в 1707 году была выписана императором Петром I из Англии и установлена в Летнем саду, где проработала много лет.

К сожалению, такие машины могли поднимать воду не более чем на 10 метров. Ведь подъем воды в них происходил, в сущности, под действием атмосферного давления.

Между тем имелось множество шахт, где нужно было откачивать воду с глубины 30 м и более. Можно, конечно, было поставить целую цепочку таких машин, но это сложно.



Рис. 2. Повторяем опыт маркиза Ворчестера.


Журнал «Юный техник» читать все книги автора по порядку

Журнал «Юный техник» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Юный техник, 2008 № 01 отзывы

Отзывы читателей о книге Юный техник, 2008 № 01, автор: Журнал «Юный техник». Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.