С целью экспериментального подтверждения выводов теоретиков и был затеян эксперимент СОВЕ (Cosmic Background Explorer), в осуществлении которого и приняли самое деятельное участие нынешние лауреаты вместе с тысячами других специалистов разных отраслей.
Началась работа в 1974 году. Однако реализовать проект удалось лишь 15 лет спустя; спутник СОВЕ был запущен 18 ноября 1989 года.
«Затем мы 4 года получали со спутника информацию и накапливали ее массив, — говорит Мейзер. — После этого еще несколько лет анализировали полученную информацию, пока, наконец, смогли предъявить первые результаты»…
Впрочем, задержка с запуском имела и положительный аспект, отмечает лауреат. За это время были значительно усовершенствованы измерительные приборы, что в конечном итоге и привело к победе.
Наиболее важными были две группы приборов. Дифференциальные микроволновые радиометры, настроенные на три разные частоты, были предназначены для обнаружения анизотропии — пространственной неравномерности распределения температуры реликтового излучения. За эту часть оборудования и измерений отвечал Джордж Смут. А вот высокоточное измерение реликтового излучения с помощью спектрофотометра курировал Джон Мейзер. Он же осуществлял общее руководство проектом.
«В итоге мы заглянули в то время, когда Вселенной было 300–400 тысяч лет, — говорит Дж. Смут. — Казалось бы, и это солидный срок. Однако вспомните, общий возраст Вселенной составляет почти 14 млрд. лет. Так что если провести аналогию с возрастом человека, то получается, что исследователи смогли зафиксировать развитие эмбриона на самом начальном этапе его развития.
Ищите объяснения…
Но зачем нужен был дорогой проект, обошедшийся в десятки миллионов долларов? Не проще ли (и дешевле) было измерять реликтовое излучение прямо с Земли? Ведь оно, как уже отмечалось, вездесуще…
По словам профессора Мейзера, вести точные наблюдения с Земли очень сложно. Атмосфера поглощает некоторую часть космического излучения, а взамен него генерирует свое собственное. Кроме того, как сказано, существует множество помех чисто земного происхождения. Все это весьма затрудняет наблюдения, так что просто необходимо было выйти в космос.
Проблема затруднялась еще тем, что теоретики не могли предсказать хотя бы порядок величины отклонений, которые предстояло зафиксировать. Сначала речь шла о процентах, затем о десятых долях процента, наконец, о сотых… На самом деле, как оказалось, изменения эти не превышают десятитысячных долей процента. Так что будь приборы чуть грубее, никакого открытия не было бы…
Кроме того, в 1992 году впервые было доказано, что спектр фонового излучения совпадает с излучением так называемого абсолютно черного тела. А этот спектр характерен тем, что распределение энергии излучения зависит исключительно от температуры.
Заодно выяснилось, что на ранних стадиях температура Вселенной составляла около 3000 градусов Цельсия. С тех пор Вселенная остыла. Измеряемая в наши дни величина всего на 2,7 градуса превышает абсолютный нуль.
Так выглядит сегодня анизотропная Вселенная.
Джон Мейзер полагает, что этот факт действительно говорит о том, что излучение является эхом Большого взрыва: «Иначе невозможно объяснить точное соответствие измеренного нами спектра со спектром идеального черного тела».
Правда, некоторые ученые попытались найти и иные объяснения этому факту. Но пока ничего вразумительного предложить не смогли. А если найдут — это, на верное, будет основанием для присуждения очередной Нобелевской премии. Ведь тогда теоретикам придется изобретать и новый вариант образования Вселенной.
Г. МАЛЬЦЕВ, научный обозреватель «ЮТ»
Кстати…
А ГДЕ ЖЕ НАШИ?
Говорят, в списке нобелевских лауреатов могли бы появиться и русские фамилии, если бы не некоторые «но»… Дело в том, что в 1983 году в СССР был запущен спутник «Прогноз-9» (см. рисунок).
Он удалился от Земли на расстояние 700 тыс. км — далеко за орбиту Луны — и там, на просторе, обнаружил первые проявления анизотропии. Полученные данные были обработаны и в январе 1992 года доложены в Астрономическом институте имени Штернберга. Затем статьи об открытии анизотропии, подписанные Игорем Струковым, Дмитрием Скулачевым, Андреем Брюхановым и Михаилом Сажиным, прошли в «Письмах в Астрономический журнал» АН СССР, а также в английском Monthly Notices Royal Astronomical Society, издаваемом Королевским обществом. И только после этого в мае 1992 года статью с подтверждением об открытии анизотропии реликтового излучения опубликовали американцы. Правда, качество их данных оказалось выше, поскольку спутник США был новее. Кроме того, американцы запустили вскоре еще один специализированный спутник W-MAP, получив уточненные данные.
Российские ученые хотели отыграться и опередили американских коллег на шесть лет, запустив весной 1983 года спутник «Прогноз-9». По словам Дмитрия Скулачева, одного из авторов проекта, он начал передавать весьма интересные данные, но в феврале 1984 года упал на Луну и прекратил свое существование. Запуску следующего спутника помешала перестройка. И постепенно о российских ученых, которые перестали участвовать в научной гонке, забыли.
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Зеркала для звезд
В огромном спортивном зале стадиона Университета Аризоны (г. Туссон, США) временно размещена установка, сконструированная Роджером Ангелом. С виду это настоящая «летающая тарелка».
«Тарелка», да не та…
«Это поблескивающее огнями, величественное сооружение 9 метров в диаметре и около 3 метров в вы соту, которое вращается с частотой в пять оборотов в минуту, опутано черными кабелями, трубопроводами, стальными балками и в самом деле похоже на иноземный корабль, — соглашается доктор Ангел, худощавый седовласый астроном, возглавляющий Лабораторию зеркал Обсерватории Стюарта. — Однако назначение этого агрегата совершенно иное. Внутри массивного цилиндра в специальной ванне до поры до времени томятся 16 тонн расплавленной стеклянной массы, нагретой до 1150°C. Оранжевый расплав станет основой зеркала для самого большого телескопа в мире»…
Как только стеклянная масса будет полностью готова, ее по платиновым трубопроводам (к этому драгметаллу стекло прилипает меньше всего) отправят в форму, которая будет в тот момент стремительно вращаться, с тем чтобы центростремительные силы заставили поверхность стекла принять близкую к идеалу параболическую форму. Именно такая форма — диск с параболической поверхностью 8,5 метра в диаметре — и есть наиболее подходящая форма для зеркала, которое должно фокусировать свет звезд, отстоящих от нас на десятки миллиардов световых лет. С помощью этого зеркала астрономы надеются наконец-таки увидеть край Вселенной, а точнее, тот момент, когда она была рождена в результате Большого взрыва.
Ведь телескопы, если хотите, — это своего рода машины времени. Улавливая свет звезд, которые идут к нам в течение многих миллиардов световых лет, они как бы переносят нас в те далекие времена, показывают мир, каким он был при рождении Вселенной.
Потомки «ночезрительной трубы»
«Зеркало, стекло для которого варится в Туссоне, всего лишь одно из семи, которые составят основу нового телескопа «Магеллан», — продолжает рассказ доктор Роджер Ангел.
Он вот уже 20 лет работает над осуществлением этого проекта. И как пояснил ученый, со времен Галилея астрономы, их помощники делали линзы и стекла своих телескопов цельнолитыми. Причем если сам Галилей, в ту пору профессор Падуанского университета, в 1608 году собственноручно соорудил телескоп-рефрактор, который по существу представляет собой подзорную трубу, дававшую увеличение всего в 3 раза, то его последователи добились большего. Телескопы во всем мире начали интенсивно «расти», линзы становились все больше диаметром. Тому было несколько причин.
Схема телескопа «Магеллан».
Одно из семи параболических зеркал (1) собирает свет далеких звезд. Суммарный световой поток концентрируется на вторичном зеркале (2) и отправляется через отверстие (3) в центральном зеркале на дальнейшую обработку.
Как показали исследования, разрешающая сила телескопа во многом определяется диаметром его объектива, другими словами, увеличение телескопа тем больше, чем больше его передняя линза. А линза значительных размеров собирает и больше света, значит, можно увидеть слабые и далекие звезды.
Однако с увеличением размеров линз, как правило, возрастают и свойственные им недостатки. Так, лучи света, собираемые линзой, перестают сходиться в одной точке, в фокусе. Изображение из-за этого получается размытым, а также окрашенным. Зачастую в стекле линзы оказываются пузырьки воздуха, само стекло получается неоднородным. Сложнее придать большой линзе и необходимую форму.