My-library.info
Все категории

Эдуардо Лопец - Кеплер. Движение планет. Танцы со звездами.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Эдуардо Лопец - Кеплер. Движение планет. Танцы со звездами.. Жанр: Биографии и Мемуары издательство Де Агостини, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Кеплер. Движение планет. Танцы со звездами.
Издательство:
Де Агостини
ISBN:
2409-0069
Год:
2015
Дата добавления:
13 август 2018
Количество просмотров:
320
Читать онлайн
Эдуардо Лопец - Кеплер. Движение планет. Танцы со звездами.

Эдуардо Лопец - Кеплер. Движение планет. Танцы со звездами. краткое содержание

Эдуардо Лопец - Кеплер. Движение планет. Танцы со звездами. - описание и краткое содержание, автор Эдуардо Лопец, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Иоганн Кеплер был глубоко религиозным человеком. Благодаря своему научному подходу он создал образ мира, отражающего всю полноту Божественной гармонии. Сформулированные им три закона движения планет дали изящное математическое объяснение наблюдениям Тихо Браге, подтвердили выводы Коперника и проложили путь открытиям Ньютона. Как и многие другие первопроходцы в науке, Кеплер занимался дисциплинами, которые сейчас мы называем эзотерическими, в частности, астрологией. Со временем он стал знаменитым астрологом: к его услугам прибегали принцы и короли. Но ни высочайшее покровительство, ни набожность ученого не спасли его от ужасных последствий религиозных войн, пылавших в то время в Европе.

Кеплер. Движение планет. Танцы со звездами. читать онлайн бесплатно

Кеплер. Движение планет. Танцы со звездами. - читать книгу онлайн бесплатно, автор Эдуардо Лопец

Смерть Тихо Браге окружена тайной. Чаще всего утверждается, что он умер от задержки мочи, спровоцированной тем, что ученый вовремя не воспользовался туалетом во время королевского приема. Болезненная агония продолжалась 11 дней. В последнее время появилась гипотеза, что Браге умер от отравления, потому что в его волосах было обнаружена высокая концентрация ртути. Когда начали искать причастных к убийству, подозрение пало на Кеплера. Некоторые даже утверждают, что он отравил своего коллегу, чтобы завладеть всеми данными наблюдений. Однако, зная характер Кеплера, эту нелепую гипотезу невозможно принять.



Благодарность

Кеплер был честным и порядочным человеком. Хотя его разногласия с Тихо Браге были довольно серьезными, особенно в его первый приезд в Прагу, позднее Кеплер испытывал глубокую благодарность к соратнику – единственному, кто помог ему после изгнания из Граца и кто всегда отдавал должное трудам Кеплера и его добросердечности. Большую часть своей жизни он посвятил завершению работы великого и экстравагантного исследователя и организовал публикацию Рудольфовых таблиц. Эту задачу Кеплеру поручил сам император Рудольф II. Он передал в распоряжение ученого все данные наблюдений Браге и самые совершенные в то время измерительные инструменты – предшественники телескопов. Кеплер завершил составление таблиц, считая эту миссию священной для сохранения памяти о своем почитаемом коллеге.


ТРИ ЗАКОНА КЕПЛЕРА

Приведем современную формулировку этих законов, а потом вспомним, как они появились. Итак, три знаменитых закона Кеплера:

– первый: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце;

– второй: каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади;

– третий: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.


Площади Солнце-A-В, Солнце-С-D и Солнце-E-F, проходимые за одинаковые промежутки времени, равны.


Главная ось – это линия апсид, которая проходит от перигелия (самая близкая к Солнцу точка орбиты) к афелию (самая дальняя точка).

Первые два закона иллюстрирует рисунок. Эллипс – это геометрическое место точек плоскости, для которых сумма расстояний до двух данных точек (фокусов эллипса) постоянна. Это определение было предложено самим Кеплером, и согласно ему Джеймс Клерк Максвелл предложил для построения эллипса метод садовника. Для этого в точки фокусов эллипса втыкаются две булавки, к ним привязываются концы нити, затем с помощью третьей булавки нить между иголками оттягивается в сторону. Булавка, оттягивающая нить, скользит, описывая эллипс. В фильме «Агора» режиссер Алехандро Аменабар рассказывает легенду о том, что этот метод изобрела женщина-астроном Гипатия.

Максимальное расстояние от центра эллипса до его границы называется большой полуосью (обозначим ее как а). Минимальное расстояние от центра до его границы называется малой полуосью (b). Эксцентриситет орбиты, е, определяется с помощью формулы:

b=a(1-e2)½

Когда эксцентриситет е равен нулю, b = а, эллипс является окружностью, а его фокусы совпадают в центре окружности. Когда е приближается к 1, эллипс становится все более вытянутым, приближаясь к отрезку при е = 1.

Второй закон подразумевает, что чем ближе планета к перигелию, тем больше ее скорость по сравнению со скоростью в афелии. Перигелий – это самая близкая к Солнцу точка орбиты, афелий – самая дальняя. При круговой орбите нет ни афелия, ни перигелия, и в этом случае скорость движения планеты постоянна.

Рассмотрим третий закон Кеплера для круговой орбиты с нулевым эксцентриситетом. В этом случае сила гравитационного притяжения, действующая на планету, равна ее массе под действием центробежной силы (V²/d):


где G является константой всемирного притяжения, М – массой Солнца, d – расстоянием планеты до Солнца и V – ее скоростью. G и М постоянны независимо от рассматриваемой планеты:

V²d= константа. [1]

Принимая во внимание формулу, которая соотносит линейную скорость V с угловой скоростью Ω,

V = Ωd, [2]

и что период обращения Т связан с угловой скоростью:

Ω=2π/T

подставив [3] в [2] и затем [2] в [1], получаем:

d³/T² = константа. [4]

То есть куб средних расстояний между планетами пропорционален квадрату периода обращения.

Как видите, чтобы сделать такой вывод, нам хватило половины страницы. Почему же Кеплеру не хватило целой книги? Стоит учитывать, что для выведения третьего закона Кеплера мы использовали закон тяготения Ньютона, в то время еще неизвестный. Более того, на самом деле все было с точностью до наоборот: это Ньютон, изучив законы Кеплера, сформулировал закон всемирного тяготения таким образом, чтобы эти законы исполнялись. Приведенные рассуждения, справедливые только при круговой орбите, – лишь способ запомнить третий закон Кеплера.

Приведем таблицу расстояний планет до Солнца. В первой колонке указаны названия планет, во второй – расстояния от них до Солнца в миллионах километров, в третьей – те же расстояния, но с использованием астрономической единицы, которая равна расстоянию от Земли до Солнца. В четвертой эти величины округлены, чтобы их легче было запомнить, и, наконец, в пятом столбце указано время, необходимое лучу света для преодоления этих расстояний.

Планета В миллионах километров В астрономических единицах В астрономических единицах округленно Время, необходимое лучу света для преодоления расстояния Меркурий 58 0,387 1/3 3 мин Венера 108 0,723 3/4 6 мин Земля 150 1 1 8 мин Марс 228 1,524 3/2 13 мин Юпитер 778 5,203 5 45 мин Сатурн 1427 9,539 10 1час 20 мин Уран 2870 19,18 20 2 часа 40 мин Нептун 4497 30,06 30 4 часа

В примере [4] описан третий закон Кеплера: куб расстояний пропорционален квадрату периодов, коэффициент пропорциональности зависит от G и массы Солнца. Однако представим, что нам неизвестны эти константы и мы хотим использовать третий закон Кеплера для того, чтобы узнать периоды планет на основе приблизительных расстояний из таблицы. Все окажется очень простым, если измерять расстояние в астрономических единицах (а.е.). Мы можем преобразовать в этих единицах предыдущую формулу: Т = d3/2 то есть если мы хотим узнать период обращения (сидерический период) планеты, нам нужно возвести расстояние в куб и извлечь квадратный корень.


Эдуардо Лопец читать все книги автора по порядку

Эдуардо Лопец - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Кеплер. Движение планет. Танцы со звездами. отзывы

Отзывы читателей о книге Кеплер. Движение планет. Танцы со звездами., автор: Эдуардо Лопец. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.