Число ф и внешние размеры Великой пирамиды
Число ф (или золотое сечение) эквивалентно (1 + корень квадратный из 5) / 2 = приблизительно 1,6180339... (см. Уэст, 1979).
Число ф получается путем деления линии АС в точке В таким образом, что АС / АВ = АВ / ВС. Это означает, что весь отрезок должен относиться к большей его части точно так же, как эта большая часть относится к меньшей. Это и есть знаменитое золотое сечение (Уэст, 1979).
Возьмем квадрат со стороной 1 и разделим его пополам, проведя линию между серединами противоположных сторон; у нас получатся два прямоугольника с отношением сторон 1x1/2. Длина диагонали одного из прямоугольников плюс 1 /2 равна ф. Согласно теореме Пифагора, длина такой диагонали (обозначим ее W) находится в следующих соотношениях с двумя другими сторонами: W2 = 12 + (1 /2)2. Или W2 = 1,25 и, таким образом, W = корню квадратному из 1,25, а ф = корню квадратному из 1,25 + (1 /2). Однако корень квадратный из 1,25 можно умножить на 1 в форме √4/2, что дает √4x1,25 / 2 = √5 / 2. Теперь подставим √5/2 вместо √1.25 в уравнение ф = √1,25 + (1/2) и получим ф = (1 + √5) / 2.
Одна из важных характеристик ф заключается в том, что 1 + ф = ф2.
В последовательности Фибоначчи - 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89... - каждое последующее число представляет собой сумму двух предыдущих. Соотношения последующих чисел дают все более точные приближения к значению ср (золотого сечения). Так, например, 55 к 34 = 1,61747, тогда как ф (число опять-таки иррациональное, которое невозможно выразить конечными цифрами) = 1,6180... (Герц-Фишлер, 2000; Томпкинс, 1971). Именно благодаря последовательности Фибоначчи ф, по некоторым источникам, контролируют многие явления природы, такие как кривые роста морских организмов (например, спирали раковины моллюска наутилус), семянок в сложных цветах или спирали галактики.
Согласно Шваллер де Любичу (Томпкинс, 1971), древние египтяне знали, что соотношение между π и ф выражается формулой π = ф2 х 6/5. Возьмите два приближенных значения ф в последовательности Фибоначчи и подставьте их в это уравнение, и вы получите приближенное значение π (приближенные значения π становятся все точнее по мере увеличения чисел в последовательности Фибоначчи). Например, приближенное значение π, использованное в Великой пирамиде, составляет
(34/21) х (55 / 34) х6/5 = (55/21) х (6 /5) = (11 /21)х6 = 66 /21 =22/7.
Современный исследователь Стеччини доказал, что в планировке Великой пирамиды, по крайней мере - ее части, использовалось число ф. Предположим, y - это горизонтальное расстояние от середины северной стороны у основания до точки непосредственно под вершиной Великой пирамиды. y равно 0,5 стандартной длины основания = 439,5 локтей (по данным Стеччини), деленному на 2 (230,363178 м, деленные на 2, составляют 115,181589 м). Сказать, что северная сторона пирамиды была возведена с учетом ф, означает признать, что y, деленное на корень квадратный из 1, деленный на ф, равен высоте Великой пирамиды, или 115,181589 / √(1/1,618) = 146,512 м. Это соответствует тому, что Герц-Фишлер (2000) описывает как «теория треугольника Кеплера» применительно к форме Великой пирамиды. Если А - это апофема стороны Великой пирамиды (апофема - это расстояние от середины стороны у ее основания до апекса, или вершины, пирамиды). У Великой пирамиды апофема составляла бы примерно 186,5 м, если бы пирамида была достроена и имела вершину; если же стороны имеют неодинаковые пропорции, у каждой из них будет разное значение апофемы, то, согласно теории треугольника Кеплера, A/y = ф.
Соотношение между этими подходами можно показать следующим образом:
y/√1/ ф = h
y2 + h2 = А2/. Подставив в последнем уравнении y / √1/ф вместо h, получим
y2 + фУ = А2 или (1 + ф) y2 = А2.
Однако одно из свойств ф таково, что (1 + ф) = ф2 (Герц-Фишлер, 2000), так что ф2У2 = А2, или фY = А, а после перестановки - A /y = ф.
Треугольник Кеплера - это прямоугольный треугольник у которого отношение гипотенузы к большему из катетов равно отношению большего катета к меньшему. В треугольнике Кеплера гипотенуза, деленная на длину меньшего катета, равна <р (Герц-Фишлер, 2000). В предьщущих уравнениях A/Y = ср, где А - это гипотенуза, a Y - меньший из катетов. В конкретном случае Великой пирамиды, если мы воспользуемся следующими значениями соответственно для апофемы, высоты и Y: 186,367 м (значение апофемы, рассчитанное на основе двух следующих значений по теореме Пифагора), 146,512 м и 115,182 м, то отношение гипотенузы к длине большего из катетов равно 1270, а отношение большего катета к меньшему -1272, что можно считать весьма близким соответствием.
С теорией треугольника Кеплера совпадает, давая тот же результат, а именно A/Y = ф, так называемая теория равной площади (Герц-Фишлер, 2000). Суть теории равной площади состоит в том, что площадь поверхности одной стороны Великой пирамиды равна квадрату ее высоты. При использовании значений h, А и Y, указанных выше, теория равной площади предусматривает, что
h2 = (1/2) (2A)Y = AY.
По теореме Пифагора мы знаем, что hI + YI = AI.
Произведя перестановку (hI = AI - YI) и подставив эту величину в уравнение Ы = AY, получим:
А2 - Y2 = AY.
Разделив обе стороны на Y2, получим (A/Y)2 - 1 = A/Y, а затем прибавим 1 к каждой из сторон и получим 1 + A/Y (A/Y)2, при условии, что 1 + ф = ф2.
Это означает, что A/Y = ф, что представляет собой тот же результат, что и теория треугольника Кеплера.
Если A/Y = ф, тогда l/ф = Y/A, и по правилу тригонометрии теоретический угол наклона стороны Великой пирамиды будет равен косинусу 1/ф = 1/1,618 = 0,168, что составляет примерно 51,827°.
Не забывайте, что с точки зрения расчетов угла теорию <р можно считать дающей более близкие результаты к реальной форме Великой пирамиды, чем теория треугольника Кеплера или теория равной площади. Впрочем, все три эти теории дают результаты, достаточно близкие к реальным замерам (которые также могут включать в себя определенные отклонения от форм и углов, первоначально намеченных древними архитекторами).
Теорию равной площади поддерживал Тэйлор (1859) и, по крайней мере отчасти, Эгнью (1838, в кн. Герц-Фишлера, 2000). Герц-Фишлер считает вполне возможным, что Тэйлора вдохновили комментарии Эгнью. И если кто и заслуживает доверия в вопросе о полном развитии теории равной площади, то это, на мой взгляд, Тэйлор.
Эгнью и Тэйлор в основу своих концепций (или, в случае Эгнью, протоконцепции) теории равной площади положили собственные интерпретации свидетельств Геродота. Так, Герц-Фишлер (2000) приводит цитату из весьма примечательного фрагмента «Истории» Геродота (кн. 2, глава 124), которая гласит.- «Возведение самой пирамиды заняло двадцать лет. Ее основание - квадрат, сторона которого имеет восемь плефр в длину и столько же в высоту. Вся пирамида сложена из отполированных и превосходно пригнанных друг к другу камней; среди них нет ни одного блока размером менее тридцати футов в длину».
Свидетельство Геродота, при буквальном понимании указанных в нем линейных размеров, невозможно считать точным. Длина сторон Великой пирамиды не равнозначна их высоте, и, кроме того, значения длины сторон не равны их апофеме или ребру (ребро -это грань между двумя смежными сторонами пирамиды от угла основания до ее вершины; длина ребра Великой пирамиды составляет 219 м). Тэйлор предположил, что термин плефрон (мн. число - плефры) использован Геродотом в качестве единицы площади, а не в качестве линейной меры, и действительно, он мог употребляться и в том и в другом значении (кстати сказать, термин плефры неоднократно используется у самого Геродота в качестве меры площади. Понять, как определить площадь поверхности стороны через посредство линейных мер, довольно легко, но как же быть с замерамивысоты, выраженными в мерах площади? Тэйлор высказал предположение, что мера, которую имел в виду Геродот, - это квадрат высоты (площадь поверхности, определенная по формуле h х h), который должен равняться площади поверхности каждой из сторон.
При такой интерпретации мне не вполне понятно, что представлял собой плефрон с точки зрения современных мер. По расчетам Герц-Фишлера (2000), 8 плефр равны 7589 квадратным метрам, но я не уверен, что эти данные точны. С точки зрения теории равной площади особенно важна близость площади поверхности к квадрату ее высоты (h2). Если мы возьмем значение h = 146,6 м, то h2 будет равно 21 492 м2. (Используемые здесь значения высоты, длины стороны и апофемы идентичны значениям этих же величин в книге Герц-Фишлера). Расхождение с точным значением площади составляет всего 7 кв. м, так что теоретические данные и расчеты весьма близки между собой.
Стеччини (1971) рассматривает и другие древние свидетельства о размерах и пропорциях Великой пирамиды, вплоть до Агафархида Книдского[147] (II в. до н.э.), служившего при Птолемеях[148] - царской династии, правившей Египтом. И, согласно интерпретации этих свидетельств, принятой Стеччини, оценка площади поверхности, приводимая Геродотом, весьма точна.