Если теперь опять от атомов перейти к такси, то полученный результат означает, что среднее расстояние между многими такси и таксомоторным парком, из которого они вышли одновременно, со временем изменяется по закону ≈ t1/2 . Последнюю формулу удобно переписать в другом виде:
X2n=Dt
Величина D = а2/τ называется коэффициентом самодиффузии.
При строгом расчете, когда учитываются все шесть возможных перемещений атома (вперед и назад вдоль каждого из трех направлений в пространстве), оказывается, что D = а2/6τ.
А теперь модельный эксперимент «блуждающие точки». Заставьте хаотически блуждать 10 точек, потребовав, чтобы каждая из них двигалась вдоль прямой: когда брошенная монета падает «орлом» — шаг вправо (например, сантиметровый), «решеткой» — такой же шаг влево. После того как все точки сделают одинаковое число шагов, надо величину смещения (в сантиметрах) каждой из них возвести в квадрат, эти квадраты просуммировать и разделить на число точек, т. е. на 10. Так будет найдена величина X2n. Затем такой подсчет надо повторить при нескольких других значениях числа шагов, вплоть до п = 100. Построив график зависимости X2n от п, мы убедимся, что, как это и предсказывает формула, которую мы записали, поверив в ее справедливость, X2n линейно увеличивается с ростом п. Такой эксперимент мы сделали, и его результаты изобразили на рисунках. Ушло на это два часа, трудились вдвоем, я бросал монету, товарищ вел записи, затем мы построили график зависимости X2n от п.
Хотелось бы в координатах X2n и п получить прямую, согласно формуле именно прямая и должна быть. На нашем графике точки, не ложась точно на прямую, рассыпаны вблизи нее. Это естественно, так как слишком мало точек и шагов, слишком мала статистика для того, чтобы вероятностные законы обрели точность. Однако и в нашем опыте (всего 10 точек, каждая по 100 шагов) закон X2n ~ п себя проявил.
Итак, оказывается хаос — не хаос! В нем скрыты строгие закономерности, которые себя отчетливо проявляют в процессе хаотических блужданий атомов в кристалле — тем отчетливее, чем больше атомов и чем большее число неупорядоченных скачков совершает каждый из них.
Нам, вглядывающимся в непременные признаки жизни кристалла, конечно же, следует познакомиться с количественными характеристиками того процесса, который мы называем «обычная классическая самодиффузия» или «бесцельное блуждание атомов в кристалле». Будем говорить главным образом о вакансиях, твердо помня при этом, как взаимообусловлены перемещения вакансий и атомов.
Совокупность вакансий в кристалле может быть уподоблена идеальному газу. Аналогия между газом реальных молекул или атомов и газом «атомов пустоты» имеет вполне разумные основания. Подобно молекулам идеального газа, вакансии в кристаллической решетке находятся друг от друга на значительных расстояниях и поэтому практически между собой не взаимодействуют. Иногда они сталкиваются, после чего уходят в разные стороны.
Для того чтобы пользоваться этой аналогией, следует убедиться, что, подобно идеальному газу, газ вакансий разрежен. Это основное условие, которому должен удовлетворять идеальный газ. Оценим среднее расстояние между вакансиями lυ . Если в единице объема находится пυ вакансий, то
т. е. вакансии в среднем удалены друг от друга на двадцать межатомных расстояний. Приблизительно на таком же расстоянии друг от друга находятся молекулы в воздухе при атмосферном давлении. С понижением температуры концентрация вакансий сυ быстро уменьшается, среднее расстояние между ними lυ увеличивается, газ вакансий становится еще более разреженным, а это означает, что основное условие идеальности оказывается выполненным.
Итак, совокупность вакансий — разреженный газ. Однако частицы этого газа движутся не в свободном пространстве, а в кристаллической решетке, и это определяет характер их движения. Между двумя столкновениями они движутся не по прямой, а по очень запутанной ломаной линии, состоящей из прямолинейных отрезков — они определяются расстояниями между соседними позициями в кристаллической решетке, которые зависят от ее структуры.
Обсудим характеристики газа вакансий в каком-нибудь определенном кристалле, например в золоте, имеющем следующие характеристики: решетка кубическая, расстояние между двумя позициями, где могут находиться атомы, а ≈ 3 • 10-8 см, температура плавления 1336 К. Период тепловых колебаний атома в узле решетки τ0 ≈ 10-13 с. Допустим, что температура кристалла Т = 1330 К, т. е. на 6 К ниже точки плавления, и проследим при этой температуре судьбу вакансии. Ее состояние характеризуется следующими цифрами:
Природе почему-то понадобилось, чтобы вакансия отличалась беспримерной суетливостью!
Можно бы вычислить еще некоторые характеристики вакансий. Например, установить, что, пройдя по прямой в среднем 3 мкм, вакансия столкнется с себе подобной, что такие столкновения вакансия испытывает приблизительно сто раз в секунду, что две столкнувшиеся вакансии совершат совместно приблизительно десять периодов колебаний и лишь после этого порознь будут продолжать свой путь.
Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью ≈ 1 м/ч.
С понижением температуры коэффициент диффузии будет уменьшаться, а время «оседлой жизни» увеличиваться. И то, и другое будет происходить быстро — но экспоненциальному закону, и степень удивительности приведенных цифр будет уменьшаться. И все равно они — эти цифры — достаточное основание, чтобы слова «кристалл» и «мертвое тело» не употреблялись как синонимы.
Исповедующие традиционную убежденность в том, что популяризовать можно лишь прочно укрепившиеся в науке идеи и надежно установленные факты, сочтут этот очерк преждевременным, так как он посвящен идее, пребывающей в младенческом возрасте, еще не испытанной временем. Она не успела себя широко зарекомендовать, не оказала заметного влияния на развитие физики кристаллов. Получила косвенную апробацию лишь в нескольких экспериментах. И все же мне она представляется настолько жизнеспособной, что, не очень рискуя ошибиться, хочу предсказать ей успехи в будущем. А это мне, не придерживающемуся традиционного взгляда на область популяризации, кажется вполне достаточным основанием, чтобы о новорожденной идее рассказать в популярной книге.
Речь идет о «мигающей вакансии», образе, который родился в представлении физика, исследовавшего влияние электронного облучения на изменение некоторых физических свойств рыхлых кристаллов. «Рыхлых» — это значит таких, в решетке которых очень много незамещенных позиций. «Рыхлых» — это значит обладающих такой решеткой, при которой в структуре много пустоты в виде межузельных пространств.
Впрочем, пожалуй, о том, что было вначале, удобнее будет рассказать в конце очерка, а сейчас расскажу о том, что такое мигающая вакансия.
Обсуждая «пару Френкеля», мы обратили внимание на то, что пока атом, перешедший из узла в междоузлие, не ушел от этого узла на расстояние более атомного, он может с большей вероятностью возвратиться в покинутый им узел. «Родственная связь» между атомом и узлом окончательно не прервана, и дефект «по Френкелю» еще не возник. Мыслимы, однако, ситуации или, точнее говоря, мыслимы такие кристаллы, в которых родственная связь между узлом и атомом, покинувшим узел, сохраняется и тогда, когда атом ушел на значительное расстояние от узла. Сохранив родственную связь, он охотно в этот узел возвращается. Представим себе такую ситуацию. Допустим, что, покинув узел, атом превратился в ион с зарядом е+, а узел при этом оказался имеющим заряд е- . Допустим, что атом, покинув узел, ушел от него на расстояние r0. Покинул — это значит выпрыгнул вследствие тепловой флуктуации или оказался вышибленным какой-либо частицей, которая влетела в кристалл, имея большую энергию. Неважно, как покинул, а важно, что покинул! Оказавшись на расстоянии r0 , ион испытывает кулоновское притяжение к оставленной им позиции с силой, определяемой законом Кулона: F1 = е2/εr02 (ε — диэлектрическая проницаемость кристалла). Под влиянием этой силы ион мог бы возвратиться в покинутую им позицию, этому, однако, препятствует необходимость преодолеть энергетический барьер, который обусловлен наличием новых соседей данного иона в решетке. Если высота этого энергетического барьера (U0, а расстояние между соседями в решетке a, то силу, удерживающую ион в его новом положении, легко вычислить, учтя, что произведение силы на путь равно выполненной работе (или затраченной энергии): F2а = U0 , т. е. F2 = U0 /а. Если окажется, что сила F2 < F1 , то, невзирая на тормозящее влияние новых соседей, ион все-таки возвратится в покинутую им позицию. Сравнивая величины F1 и F2 , легко убедиться, что родственная связь между ионом и вакантной позицией не будет нарушена, если величина r0 удовлетворяет условию