Джерри выработал свою систему разбиения больших чисел на простые множители: перебирать простые числа в порядке возрастания, отсеивая сначала все четные числа, которые делятся на 2, потом все числа, которые делятся на 3, затем на 5 и т. д.
Джерри повысил голос:
— О да, мы просеиваем числа, детка! — Он начал вертеться. — Мы на сцене. Люди, давайте свои числа — мы просеем их для вас! Да! Джерри и решето!
— У меня есть два решета, — прервала его жена Мэри, сидевшая на диване рядом с нами. Мэри, музыкант и бывшая актриса массовок в сериале «Звездный путь», тоже страдает синдромом Аспергера, хотя у женщин он встречается гораздо реже, чем у мужчин. Пары с таким синдромом крайне редко вступают в брак; в 2005 году был снят фильм Mozart and the Whale («Моцарт и Кит»)3, в основу которого лег их необычный роман.
Иногда Джерри не удается разложить большое число на простые множители, а это означает, что данное число само является простым. Такие случаи вызывают у Джерри непередаваемые ощущения:
— Когда встречаешь новое простое число, это как будто смотришь на камни и находишь среди них что-то необычное. Нечто вроде бриллианта, который можно взять домой и положить на полку, — объясняет Джерри.
И, сделав паузу, добавляет:
— Новое простое число — это как новый друг [2].
Первые слова и символы для обозначения чисел появились около 5000 лет назад в Шумере, исторической области в Южном Двуречье, расположенной на территории современного Ирака. Шумеры придумывали для чисел названия, пользуясь имеющимися в их языке словами. Например, для обозначения единицы употреблялось слово ges («геш»), второе значение которого — мужчина или фаллос. Двойка обозначалась словом min («мин»), также символизирующим женское начало. Возможно, это подчеркивало то, что мужчина занимает доминирующее положение, а женщина — лишь дополнение к нему, или характеризовало мужской половой член и женскую грудь [3].
Изначально числа использовались для практических целей, таких как подсчет овец или расчет налогов, но при этом отображали и абстрактные закономерности, что делало их предметом глубоких размышлений. Одним из первых математических открытий было, пожалуй, разделение чисел на две категории: четные — целые числа, которые делятся на 2 без остатка (например, числа 2, 4 и 6); и нечетные — которые не делятся на 2 без остатка (например, 1, 3 и 5). Греческий мыслитель Пифагор, живший в VI веке до нашей эры, провозгласил нечетные числа мужскими, а четные — женскими, тем самым подтвердив отмеченную шумерами ассоциативную связь между единицей и мужчиной, а также двойкой и женщиной. Он утверждал, что нежелание делиться на два — это признак силы, тогда как склонность к такому делению — признак слабости. Пифагор дал следующее арифметическое обоснование своих выводов: нечетные числа главенствуют над четными точно так же, как мужчина главенствует над женщиной, поскольку сложение нечетного и четного чисел всегда дает в результате нечетное число.
Пифагор больше всего известен теоремой о треугольниках, о которой мы поговорим позже. Тем не менее его утверждение о гендерной принадлежности чисел доминировало в западной философской традиции более двух тысяч лет. В христианстве это нашло отражение в мифе о сотворении мира: Адама Бог создал первым, а Еву — второй. Единица символизирует единство, тогда как двойка — «грех как отклонение от изначального добра» [4]. Средневековая церковь считала нечетные числа, в отличие от четных, более сильными, добродетельными, праведными и приносящими удачу. Во времена Шекспира были широко распространены метафизические представления о нечетных числах. В комедии The Merry Wives of Windsor («Виндзорские насмешницы») Фальстаф заявляет: «Я верю в нечет и всегда ставлю на нечетные числа — говорят, счастье их любит»4. И эти предрассудки сохранились до наших дней. Мистическими по-прежнему считаются только нечетные числа, в частности магическое число три, приносящее удачу, число семь и несчастливое число тринадцать.
Кроме того, именно Шекспиру приписывают употребление слова odd («нечетный») в новом значении [5]. Первоначально это слово ассоциировалось исключительно с числами и использовалось в таких фразах, как odd man out («третий лишний») — член группы из трех человек, оставшийся без пары [6]. Однако в комедии Love’s Labour’s Lost («Бесплодные усилия любви») чудаковатый испанец Дон Адриано де Армадо описывается как «человек характера крайне причудливого и слишком, слишком тщеславного»5. С тех пор словом, которое ассоциировалось раньше только с единицей в остатке от деления на два, начали обозначать и нечто необычное, причудливое.
Человеку свойственна чувствительность к числовым закономерностям. Они вызывают у него субъективную реакцию, порой чрезмерную — как в случае Джерри Ньюпорта, но в основном пробуждают глубокие культурные ассоциации. Восточная философия построена на признании дуальности мира, отраженной в таких символах, как инь и ян, «тьма» и «свет». Инь ассоциируется с пассивностью, женским началом, Луной, невезением и четными числами, а ян — с их противоположностями: агрессивностью, мужским началом, Солнцем, удачей и нечетными числами. Здесь снова можно увидеть историческую связь между удачей и нечетными числами. Особенно она сильна в Японии, где, например, принято дарить по три, пять или семь предметов, но никогда четыре или шесть [7]. Когда японцы дарят деньги молодоженам, они предпочитают суммы 30 000, 50 000 и 100 000 иен. Сумма 20 000 тоже приемлема, но в этом случае следует дарить одну банкноту достоинством 10 000 иен и две банкноты по 5000 иен. Эстетика нечетных чисел лежит также в основе икебаны — традиционного японского искусства создания цветочных композиций, в котором используется только нечетное количество цветов (это связано с влиянием буддийских представлений об асимметричности природы). Кайсэки — обед японской высокой кухни — состоит исключительно из нечетного числа блюд. Японские дети получают этот сигнал в раннем возрасте, во время праздника под названием Shichi-Go-San (буквально «семь, пять, три») — фестиваля, в котором участвуют дети только семи, пяти и трех лет. Профессор Осакского университета экономики Ютака Нишияма писал, что пристрастие японцев к нечетным числам до того укоренилось, что когда в 2000 году правительство выпустило банкноту достоинством 2000 иен, никто не стал ее использовать [8].
В странах Восточной Азии предрассудки в отношении чисел более распространены, чем на Западе. Результаты их жителей по международным тестам на математические способности гораздо выше, а это говорит о том, что мистические предубеждения не мешают освоению математических навыков. На самом деле такие предрассудки могут даже усиливать интерес к числам, желание ближе с ними познакомиться и находить в них нечто занимательное. Самое распространенное в Азии предубеждение касательно чисел связано с игрой слов. В японском языке, кантонском и мандаринском диалектах китайского языка, а также в корейском языке слово «четыре» (shi, sei, si, sa) звучит точно так же, как слова, обозначающие смерть, поэтому носители этих языков всячески избегают числа четыре. В этом регионе во многих отелях нет четвертого этажа, в салонах самолетов отсутствует четвертый ряд, а компании не выпускают продукты с четверкой в названии. В действительности число четыре ассоциируется со смертью настолько сильно, что эта связь превратилась в неизбежно сбывающееся пророчество: по данным наблюдений в США, четвертого числа каждого месяца среди американцев японского и китайского происхождения количество сердечных приступов со смертельным исходом резко увеличивается [9]. Напротив, число восемь считается счастливым, поскольку в китайском языке оно звучит так же, как слово «процветание». В ценах, которые указываются в газетных рекламных объявлениях, число 8 появляется несоразмерно часто. Получается, что две смерти равны процветанию.
В Индии нечетные числа тоже ассоциируются с процветанием и удачей. Но есть ли какая-то причина, по которой как на Востоке, так и на Западе они наделены духовным смыслом в большей степени, чем четные? Возможно, это связано с тем, что наш мозг обрабатывает нечетные числа дольше, чем четные. Данный феномен открыл психолог из Университета Пейса Теренс Хайнс и назвал его эффектом нечетных чисел. Во время одного из экспериментов Хайнс показывал на экране числа из двух цифр [10]: либо нечетных (например, 35), либо четных (как 64), либо одна четная и одна нечетная (как 27). Он попросил участников эксперимента нажимать кнопку лишь тогда, когда они видят числа, состоящие только из четных или нечетных цифр. Испытуемым понадобилось в среднем на 20 процентов больше времени, чтобы нажимать кнопку в случае чисел из двух нечетных цифр; кроме того, они при этом делали больше ошибок. Сначала Хайнс не поверил полученным результатам и подумал, что в методике тестирования, должно быть, какая-то погрешность, однако дальнейшие исследования однозначно подтвердили наличие данного феномена. Мы относимся к нечетным числам иначе не только из-за многовековых культурных установок, но и потому, что по-другому о них думаем. Нечетные числа стимулируют работу мозга.