Если Стефан не обрезал кусок, тогда его берет Гуго, а двое других делят остаток.
С точки зрения логики это правильный подход, но в случае его применения на практике можно запутаться.
Приложение 8
На рисунке 1 ниже показано решето Эратосфена на уровне поколения 0. На рисунке 2 это решето изображено на уровне поколения 650, на котором простые числа 2, 3, 5, 7 и 11 уже благополучно прошли процедуру отбора, а на рисунке 3 представлен более детальный план зоны обстрела глайдерами, изображенной на рисунке 2.
Весь процесс выглядит следующим образом. Фигура, выделенная на рисунке 2 и обозначенная как «ружье А», выстреливает космические корабли, движущиеся слева направо (каждый корабль представляет нечетное число). Эти корабли покинут основную конфигурацию, если им удастся уйти из-под огня ружей, выстроившихся вверху.
Давайте внимательнее рассмотрим эти ружья. Перемещаясь справа налево (именно в таком порядке создаются ружья), первое ружье (ружье В) выстреливает глайдер по диагонали вниз и налево через каждые три интервала. Это ружье уничтожит все космические корабли, которые представляют числа, кратные трем. Второе ружье (ружье С) выстреливает глайдеры через каждые пять интервалов, уничтожая все корабли, представляющие числа, кратные пяти. Следующее ружье уничтожит все корабли, представляющие числа, кратные семи, и т. д. В общем виде это выглядит так: когда ружье А порождает космический корабль, представляющий нечетное число n, зона обстрела расширяется влево, для того чтобы создать пространство для ружья, выстреливающего глайдеры через каждые n интервалов. Совокупный эффект сводится к тому, что пройти эту зону смогут лишь корабли, соответствующие простым числам. Если число n не является простым, то у него есть минимум два делителя, поэтому космический корабль, находящийся в позиции n, в конце концов будет уничтожен ружьем, выстреливающим глайдеры с интервалом, равным самому большому делителю числа n.
Для того чтобы максимально упростить процесс, ружье А выстреливает космические корабли только на позициях, соответствующих нечетным числам. После числа 2 все простые числа являются нечетными, а значит, нет необходимости конструировать космические корабли четных чисел, поскольку они все равно будут уничтожены. Четное число 2 представляет лишь первый корабль потока.
(1) Поколение 0
(2) Поколение 650
(3) Детали поколения 650
Благодарности
Выражаю искреннюю признательность сотрудникам издательства Bloomsbury в Лондоне: Биллу Свейнсону, Элисон Глоссоп, Лоре Брук, Хелен Флад, Аманде Шипп, Грегу Хайнеманну, Дэвиду Манну, Ричарду Аткинсону и особенно Гза Шоу Стюарт, которая кропотливо проверила каждую дробь и экспоненту. В нью-йоркском издательстве Simon & Schuster я получил неоценимую помощь от таких сотрудников, как Бен Лонен, Эмили Луз и Брит Гвиде, а в издательстве Doubleday в Торонто — от Тима Рострона.
Бен Самнер был невероятно энергичным выпускающим редактором книги, а Эдмунд Харрис, Инь Фун О, Джун Барроу-Грин, Эрика Джарнс и Гарет Робертс дали бесценные комментарии по поводу ее текста. Благодарю также Саймона Линдо за иллюстрации, The Surreal McCoy — за комиксы и Сьюзен Уайтмен из Libanus Press за верстку.
В этой книге я использовал информацию, полученную во время бесед и переписки со многими людьми. Я искренне признателен им за то, что уделили мне время.
Глава 1: Джерри Ньюпорт, Грег Роуленд, Маной Томас, Теренс Хайнс, Джим Уилки, Хусам Садиг, Сэффи Хейнс, Дэн Кинг, Том Диарден, Жер Торп, Франческа Ставракопулу, Франческа Рохберг, Ричард Вайзмен, Дэвид Маркс, Софи Скотт, Стивен Мэкник, Питер Линн, Ютака Нишияма, Роберт Шиндлер.
Глава 2: Уилл Ренни, Джайлан Ванг, Тед Хилл, Эрика Роджерс, Даррелл Доррелл, Альберт-Ласло Барабаши, Дэвид Хэнд, Уолтер Мибейн, Кристиан Фельбаум, Юре Лесковец, Джеффри Уэст, Пит Уайтлок.
Глава 3: Микалис Сиаларос, Апостолос Доксиадис, Марк Гривз, Роберт Вудолл, Джон Ки, Даррен Шеперд.
Глава 4: Рамиро Серра, Рон Дофлер, Иэн Дикерсон, Сильвия Пеццана, Арт Фриго-младший.
Глава 5: Боб Уитакер, Иван Москович, Том Армстронг, Бретт Крокетт, Джон Уитни-младший, Карл Симс.
Глава 6: Эндрю Смит, Роджер Ридсдилл Смит, Николай Мальш, Альберт Бартлетт, Тим Харфорд, Стэн Вэген.
Глава 7: Джон Баез, Дэвид Тонг, Дэйв Макин, Брайан Поллок, Клифф Пиковер, Дэниел Уайт, Орсон Ванг, Роберт Девани.
Глава 8: Питер Хопп, Билл Такер, Джон Уордли, Вернер Штенгель, Седрик Виллани, Фрэнки Диллен, Хартош Бол.
Глава 9: Алекс Пасо, Джим Холт, Норман Мегилл, Лоуренс Полсон, Натаниэль Джонстон.
Глава 10: Том Рокики, Адам Гаучер, Тим Хаттон, Пол Чэпмен, Дэйв Грин, Адам Рутерфорд, Стефани Пратер, Джин Бак, Стивен Вольфрам, Билл Госпер, Энди Адамацки, Ник Готтс, Джон Конвей, Крейг Лент, Даг Тауго.
Я считаю огромной удачей, что мои интересы представляет агентство Janklow & Nesbit. Я признателен своему агенту Ребекке Картер и ее коллегам Ребекке Фолланд, Кирсти Гордон, Линн Несбит и Клер Патерсон.
Каждый раз, когда возникала необходимость, мои друзья и члены семьи оказывали мне всяческую помощь, от моральной поддержки и уточнения математических моментов до возможности воспользоваться парижской квартирой. Хотелось бы поблагодарить в связи с этим таких людей, как Гэвин Претор-Пинней, Хью Морисон, Клифф Пиковер, Грэм Фармело, Джеймс Грайм, Колин Райт, Корделия Дженкинс, Франческа Сигал, Роджер Хайфилд и Саймон Купер. Я благодарен своим родителям Дэвиду Беллосу и Илоне Морисон за неизменную поддержку и веру. Больше всего я признателен своей жене Натали за огромный вклад в эту книгу и за счастье, которое она мне приносит.
В книге «Алекс в стране чисел. Необычайное путешествие в мир математики» в конце раздела с благодарностями я похвалил свою племянницу за прекрасную сдачу экзамена по математике в средней школе. Сейчас я хочу упомянуть ее имя в связи с тем, что она решила изучать математику и психологию в университете. Успехов тебе, Зара!
Предположения, уточнения, ссылки и примечания
ГЛАВА 1
[1] Каждое целое число можно разложить на единственную совокупность простых чисел. Например, число 2763 раскладывается на 3 × 3 × 307, причем только такое сочетание простых чисел дает при умножении 2763. Утверждение о том, что каждое натуральное число можно разложить на простые делители, известно как основная теорема арифметики.
[2] Самый показательный случай демонстрации арифметических вычислений человеком с синдромом гения (этим термином обозначают человека, страдающего расстройством аутического спектра и обладающего феноменальными способностями в какой-либо области) также связан с простыми числами. В книге «Человек, который принял жену за шляпу» Оливер Сакс рассказывает историю об американских близнецах Джоне и Майкле, любивших играть с шестизначными числами. Сакс пишет, что, когда близнецы обдумывали числа, они «напоминали двух знатоков вин, обнаруживших во время дегустации редкий букет и смаковавших его». Когда Сакс проверил эти числа, он увидел, что все они простые, — и решил поднять планку, предложив близнецам восьмизначное простое число. Это вдохновило близнецов, и они начали придумывать все большие простые числа. Через час они дошли до двадцатизначных чисел — но к тому времени у Сакса уже не было возможности проверить, действительно ли эти числа простые.
Алан Снайдер из Сиднейского университета убежден, что у всех людей есть ментальный механизм для выполнения вычислений, которые делают люди с синдромом гения, но из-за специфики устройства нашего мозга доступ к этому механизму при обычных условиях затруднен. С помощью экспериментов Снайдер продемонстрировал, что математическое мышление человека поддается улучшению, если воздействовать на мозг слабым электрическим током (этот метод получил название «транскраниальная микрополяризация»). Снайдер считает, что электрический ток угнетает активность нейронной системы, что, в свою очередь, высвобождает гения, живущего в каждом из нас. Хотя исследования Снайдера носят спорный характер, аналогичные результаты были получены и в других университетах.
[3] Georges Ifrah, The Universal History of Numbers, John Wiley & Sons, 2000.
[4] Винсент Хоппер. Числовая символика Средневековья. Тайный смысл и форма выражения. М. : Центрполиграф, 2014.
[5] Кроме слова odd в значении «необычный, чудаковатый», математика стала источником еще одного обозначения для человека со странностями — eccentric («эксцентричный»). Первоначально под этим словом имелась в виду орбита вокруг Земли, центр которой расположен не в той же точке, что и сама Земля.
[6] Слово odd происходит от скандинавского oddr — «острие копья». От формы копья произошло и древнеисландское слово oddi — треугольник, или полуостров. («Одди» — это также название церковной школы на севере Исландии, в которой жил в XII веке великий исландский поэт и историк Снорри Стурлусон и которая в наше время стала туристической достопримечательностью.) Именно из-за треугольника у слова odd появилось такое значение, как непарный член группы из трех человек, а затем и член любой группы. (Источники: Oxford English Dictionary, а также Анатолий Либерман, Oxford University Press, blog.oup.com/category/language-words/oxford_etymologist/.)